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Abstract—Over the years, the popularity and usage of wear-
able Internet of Things (IoT) devices in several healthcare
services are increased. Among the services that benefit from the
usage of such devices is predictive analysis, which can improve
early diagnosis in e-health. However, due to the limitations
of wearable IoT devices, challenges in data privacy, service
integrity, and network structure adaptability arose. To address
these concerns, we propose a platform using federated learning
and private blockchain technology within a fog-IoT network.
These technologies have privacy-preserving features securing
data within the network. We utilized the fog-IoT network’s
distributive structure to create an adaptive network for wearable
IoT devices. We designed a testbed to examine the proposed
platform’s ability to preserve the integrity of a classifier. Accord-
ing to experimental results, the introduced implementation can
effectively preserve a patient’s privacy and a predictive service’s
integrity. We further investigated the contributions of other
technologies to the security and adaptability of the IoT network.
Overall, we proved the feasibility of our platform in addressing
significant security and privacy challenges of wearable IoT
devices in predictive healthcare through analysis, simulation, and
experimentation.

Index Terms—Machine learning, Data privacy, Predictive
models, Distributed systems, Health care services, Platforms,
Testbed, Health informatics, Fog network, Security, Private
Blockchain, Privacy, Scalability, Internet of Things.

I. INTRODUCTION

THE usage of wearable Internet of Things (IoT) devices
in healthcare is rising. Due to their availability and sens-

ing capability, these devices collect physiological data from
patients and provide real-time diagnosis [1]. Wearable IoT de-
vices have caused remote healthcare to make a paradigm shift
into predictive diagnosis and reliable early detection. The data
collected by these devices partnered with different learning
techniques aid in predictive healthcare services. Doctors can
analyze data such as their patient’s activities and accurately
predict anomalies and threats against their health [2]. They can
also prescribe treatments for preventing and addressing these
detected concerns. However, this breakthrough has limitations
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in its technology. Challenge within a network that employs
wearable IoT devices cause impasses in predictive healthcare.

An open issue for wearable IoT devices in predictive
healthcare is the amount of data it needs to be effective. A
large amount of personal data is collected, resulting in security
and privacy concerns due to the nature of the data used for
analysis [3]. The wearable devices’ limitations on processing
capabilities lead to vulnerabilities and potential leakages in
sensitive patient information [4]. Another issue is the integrity
and reliability of the service [5]. Structuring healthcare to
prioritize certain aspects can cause trade-offs in others. Service
integrity is crucial for this field in remote healthcare that relies
on wearable data accuracy and predictive model precision.
One more issue is the adaptability of the network that deploys
and serves these predictive healthcare services [6]. Wearable
IoT device standardization is a significant concern to IoT
networks due to the heterogeneity it introduces. This diversity
results in demands for continuous maintenance and updates
to the medical server to ensure that it is up to date with
every newly introduced wearable IoT device. As a result,
concerns about adaptability limit the healthcare network from
fully remaining relevant and sustainable over long stretches
of its service.

In this work, we propose a fog-IoT platform to address
these issues. We use federated learning to preserve patient
data privacy and the integrity of the network’s predictive
services [7]. Also, we incorporate blockchain technology to
address the security issues in wearable IoT devices through its
access control and cryptographic structure [8], [9]. Finally, we
combine these technologies within a fog-based IoT architec-
ture to enforce decentralized servers and resource reallocation
to improve the adaptability and sustainability of the overall
network [10]. The main contributions of this work are:

• We present a fog-based IoT platform using federated
learning and blockchain technology to preserve patient
data privacy and improve the security of data within the
network.

• We designed a testbed that simulates and evaluates the
proposed implementation. We used model accuracy to
observe the platform’s ability to preserve the integrity of
a predictive service.

The rest of this paper is organized as follows. A discussion
on the background of our study and a brief literature review
are in Section II. Our proposed design and the methodology
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followed are in Section III. The presentation of a developed
testbed and a discussion of the results are in Section IV.
Finally, our conclusions are in Section V.

II. BACKGROUND AND RELATED WORKS

We provide a brief discussion on the relevant works in
blockchain technology and federated learning implementa-
tions for wearable IoT devices in healthcare.

A. Benefits of Using Wearable IoT Devices in Healthcare

Wearable IoT devices can form a network of sensing
devices that collect data from points of interest for predic-
tive analysis. In predictive healthcare, these devices collect
physiological information from patients for better clinical
decisions and to provide a prediction. Each obtained statistic
reflects the status of their health, which can identify future
issues and potential risks. A benefit of using wearable IoT
devices in healthcare is to reduce hospital congestion and
medical examination costs via remote diagnoses and long-
distance patient monitoring. In [11], they introduce a wearable
Tele-ECG system for heart rate monitoring. The proposed
design merges the latest technologies in textile electrodes
(TE), Bluetooth low energy (BLE), and smartphones to create
a portable means of monitoring and evaluating the condition
of a patient’s heart for potential anomalies. With features such
as geographical tracking, medical history storage, and remote
patient monitoring, the system establishes a light and cost-
effective alternative for patients suffering from heart issues
that need constant observation and evaluation.

Another advantage of using wearable IoT devices in pre-
dictive healthcare is improving the quality of early disease
and fault detection in medical centres. In [12], they present a
review of various biomedical IoT devices that raise the quality
of diagnosis in healthcare services. The survey includes wear-
able sensors as one of the leading technologies that enable
advancements in predictive healthcare IoT. Services are now
made remote and analytic. Patients can use technologies and
wearable sensors that can help give doctors early information
on potential causes and triggers of health complications. As a
result, there is improvement in predictive anomaly detection
without constraints in geographical location and data resource
availability. Also, these devices widen the scope of medical
centres toward their patients. Doctors can use trend and
behaviour analysis to pinpoint anomalies in a patient’s health.
At the same time, medical professionals can evaluate diseases
with improved precision due to leveraged real-time and early
detection [13].

B. Challenges of Using Wearable IoT Devices in Healthcare

Although the usage of wearable IoT devices shows potential
to raise the quality of services in healthcare, they also pose
the following concerns.

1) Network Security and Data Privacy: Introducing wear-
able devices to collect patient data adds more endpoints to
the server of the healthcare service. Data collection and mon-
itoring are convenient due to these remote services. However,

introducing more devices introduces more vulnerabilities to
the network. Increasing the endpoints increases the potential
areas where malicious users can attack and steal data. As a
result, there is a greater demand for better security as the
network grows. Also, privacy becomes a concern due to the
sensitive information transmitted from the wearable device
to the server. Therefore, network security and data privacy
concerns grow as the network expands with more wearable
devices.

Different strategies and technologies have been proposed
to address this issue [14], [15]. In [14], they present a multi-
keyword search mechanism to preserve data privacy within
the IoT network. They aim to strengthen the encryption of
the information transmitted from the patient to the medical
centre. This strategy achieves forward privacy preservation,
which results in a more guaranteed security system for users.
Another example that aims for privacy preservation is in [15].
They use deep learning to secure the network by separating
private from raw data. This strategy results in minimizing the
chances of leaking sensitive information.

Our approach takes key strengths from these two strategies.
We take the ability of cryptographic techniques to reinforce
data transmissions and combine them with the adaptability
of machine learning techniques to create a secure means of
preserving patient data. As a result, we chose blockchain
technology for its strong encryption and federated learning
for its adaptive ability to improve data privacy while keeping
its trained models optimized.

2) Data Integrity and Precision: An advantage of using
wearable IoT devices in healthcare is the real-time diagnosis
and early detection of illness and medical anomalies within
a patient. However, this can be affected by the quality of the
sensor and the data processing scheme behind the service.
Potential misdiagnosis is high if the sensor or the evaluation
method is not up to standard. Another source of error could
come from how the data is collected and stored on the server.
Preserving physiological information integrity obtained from
the wearable devices is needed as it travels from patient to
server. It ensures that the data is recent and precise to the
current status of the source. Also, the data handling during
aggregation should be carried out with great precision so that
the evaluation of the patient is accurate. A service that can not
collect, transmit, and process the data correctly and efficiently
will result in inaccurate results. Therefore, the integrity and
precision of information a concern that needs addressing for
a healthcare service that uses wearable IoT devices to be
effective.

Approaches that improve the integrity of sensed data from
IoT devices in healthcare services are proposed in [16], [17].
In [16], a novel data aggregator for efficient and secure
analysis in IoT monitoring is presented. Its scheme involves
a cryptographic accumulator that securely collects data from
wearable IoT devices. Another example is in [17]. This work
highlights the advantages of integrating blockchains with IoT.
They aim to enhance the performance of healthcare services
that use wearable IoT devices by using the security advantages
of blockchain technology. Similar to the approach in [16], both
strategies focus on the ability of cryptographic technologies
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to ensure the accuracy of sensed data within the IoT network.
Our proposed approach differs as it incorporates federated

learning for a more secure data aggregator. We combine it
with decentralized organizations provided by blockchain and
create a platform that ensures a secure medium for accurate
data analysis in healthcare.

3) Network Structure Adaptability and Flexibility: Wear-
able IoT devices introduce different sensors and technologies
that collect and process data. Due to their multiple advantages,
healthcare services should include them in their systems. How-
ever, innovations and improvements are iterative as changes
arise often. Although this is a sign of technological growth
and advancements in the healthcare sector, it dictates the
pace at which current infrastructures need to keep up. Device
diversity has always been a concern for IoT networks due to
the need for ongoing standardization. As this new technology
is still in development, services that use it should be able to
follow the development process. It is the same for wearable
IoT devices used in healthcare. The demand for technologies
that detect each one is high as new diseases and virus strains
often appear. However, every new technology introduced a
need for the service to adapt. Networks that are less flexible
result in losing their resources. Some even end up losing their
service and infrastructure altogether. Therefore, there is a need
for adaptability and flexibility in the structure of healthcare
networks for the continuously evolving nature of wearable
IoT devices.

Some approaches focus on improving the flexibility of
wearable devices to tackle this issue. In [18], they present an
innovative wrist-worn prototype for patient monitoring, which
also functions as an IoT gateway. Some sensors in remote
healthcare focus on sensing the environment around the patient
to ensure that the condition of their surrounding is beneficial to
their health. Through it, ambient sensing devices can connect
to the healthcare network. As a result, it sets up a platform that
can easily integrate and synchronize other devices under it.
In [19], they present a wearable patch that functions similarly
to the prototype in [18] by creating a flexible IoT gateway
for connecting wearable devices. Instead of ambient sensors,
their portal focuses on ECGs and PPGs.

Our approach is different as we aim to standardize devices
through the fog by moving analysis closer to the edge. As a
result, we focus on data management standardization instead
of device standardization due to the diversity of wearable
devices. Instead of specialization through prototypes, we plan
to use fog-IoT paired with decentralized technologies such as
blockchain and federated learning to develop a modular IoT
network for wearable devices in healthcare.

C. Federated Learning for Wearable IoT Devices

Federated learning is a machine learning technique that
takes a distributed approach in training its models [20]. It uses
its decentralized strategy to utilize global knowledge collected
from its clients. In IoT, federated learning has two compo-
nents; the client and the server [21]. Its flow of operations for
federated learning starts with each client training their model
using their raw data. Then, the server aggregates and compiles

the resulting models into a global model that it redistributes
to each client’s use. As a result, each client receives the most
optimal model given global knowledge gathered through local
training. This procedure is ongoing, and the global model is
updated every time the client provides new knowledge.

Federated learning is well-known for its capability of effec-
tively preserving the privacy of data [22]. Requiring clients to
transmit raw data directly to the server before it is analyzed
can cause vulnerabilities. Without a strongly reinforced net-
work, malicious attackers aiming to steal or tamper can target
the data. Federated learning protects raw data by creating
a strategy that moves the analysis locally. There are lesser
avenues for privacy leakages since the server only cares about
the resulting trained model from each client [23]. As a result,
this structure has an improved trusted architecture compared
to standard network arrangements. Aside from its security
advantages, federated learning also improves the sustainability
of IoT networks. It provides a dynamic learning strategy
that keeps global knowledge for services up to date [24].
Commonly, the server aggregates all the data first before it
uses it to train the global model. Federated learning allows
new correlations and behaviour changes from collected data
to be detected by the server earlier. A fully centralized scheme
is slowed down and saturated due to the volume of the data it
uses to train its models. Federated learning can reduce training
time by running it locally and in parallel. Also, there is a
significant reduction in the data size as each client trains its
model.

Healthcare services that involve wearable IoT devices re-
volve around continuous data sensing, learning, and analysis.
Federated learning can provide a sustainable and decentralized
scheme to optimize these services in healthcare [25]. We
chose to use this technology in our platform due to all the
improvements it can contribute to IoT services, specifically
healthcare. Our proposed design is different because we aim
to reinforce federated learning with the security provided by
blockchains. Also, the foundation of our network will be a
fog IoT network. The diversity of wearable IoT devices and
their limited processing capabilities is a constraint. However,
we can overcome this by moving the training to the fog. This
arrangement still allows training locally while considering the
processing limits of wearable IoT devices. The result is a
decentralized IoT network that can maximize the potential
of federated learning in keeping data analysis in healthcare
services secure and sustainable.

D. Blockchain for Wearable IoT Devices

A blockchain is a cryptographic ledger that provides a dis-
tributed service for information storage and security [26]. This
decentralized control establishes a trusted system that will
only grant access to users acknowledged by the blockchain
ledger [27]. This feature protects the data from external or
unwanted modifications and makes it immutable. For wearable
IoT devices in healthcare, the network can use blockchains as
a tamper-proof database for patient data storage.

Its unique structure addresses different security issues in
IoT networks. In [28], they use the unique consent mechanism
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of blockchains to secure user data privacy in wearable fitness
devices. They aim to prove the feasibility of the trustwor-
thiness of blockchains when fortifying the data privacy of
wearable IoT device data. Another proposed use for the access
control of blockchains is in [29]. They developed a lightweight
authentication scheme that classifies mobile devices and dif-
ferentiates them from fake data injections or illegitimate users.
Their designs show the potential of blockchain technology
in securing the healthcare server and the monitoring devices
used by its services. In [30], they use a different feature of
blockchains in reinforcing their healthcare service that uses
wearable IoT devices. They integrate the encryption model of
blockchains to improve the security of the IoT network. Their
design creates a searchable encryption technique that assists in
securing collected COVID-19 data. It shows the effectiveness
of blockchain architecture in helping protect the healthcare
IoT network from several security threats like malicious data
injection and hijacking sessions.

Our design differs from the previously presented imple-
mentations because we aim to use a private blockchain [31].
Public blockchains use a reward-based protocol called “proof-
of-work” (PoW) in granting access to their devices [17].
Although this protocol is secure, its processing requirement
is a caveat for wearable IoT devices in healthcare. In [32],
we highlighted how some wearable IoT devices are incapable
of adapting to this authentication structure due to their low-
cost and low-end designs. Therefore, we need a different
blockchain architecture that can cater to the design nature
of wearable devices. Private blockchains function differently.
They incorporate a more trust-based protocol. This approach
turns the blockchain into a hyperledger that can regulate its
devices based on a list of trusted devices defined by the
network owner. Healthcare IoT networks can benefit from this
approach more since the need for high processing power for
their wearable devices is reduced. As a result, the types of
IoT-based wearable devices they can incorporate into their
services do not limit the healthcare network [33].

III. DESIGN AND METHODOLOGY

The following is a discussion of our proposed platform,
including a description of the design and the different com-
ponents.

A. Architecture Overview

We propose a fog-IoT-based approach to secure data ex-
change from wearable IoT devices used for predictive health-
care services. We aim to improve the overall structure’s service
integrity and flexibility. To further enhance the distributive
organization of our network, we chose to use federated learn-
ing. With its ability to aggregate learning models, we can
sort our data and keep private information secure. Also, it can
reduce the sources of leakage since each client is only required
to send their locally trained model to the server. Integrating
federated learning improves the sustainability of the predictive
healthcare service by providing a system that can organize
the model data and provide a global model that represents
the overall knowledge obtained through all the local training.

Fig. 1: Network arrangement for the proposed fog-based
platform for wearable IoT devices.

The result is a scalable design that introduces flexibility by
keeping the network distributed while ensuring that it does
not impede the learning and analysis of the service.

Next, we combine federated learning with private
blockchain technology for more secure client authorization.
Also, it is treated as a hyperledger to store the IDs of
each client device and locally trained model. Due to its
immutability, tracking and logging each trained model for
version control and debugging improves the data analysis and
learning aspect of healthcare networks and their services.

Commercial wearable devices are diverse. Some are low-
end by design. To address this, we moved the process of
locally training the model from the edge of the network to the
fog. We can reallocate the training process by providing an
intermediary fog device. Usually, training takes a large portion
of processor capacity. Unfortunately, not every wearable IoT
device can do it effectively. For our platform to be able and
handle a diverse pool of wearable devices, we offloaded the
processing required to a fog device.

The proposed network arrangement is shown in Fig. 1. First,
the fog device collects all sensed data from each wearable
IoT device and trains the model locally. Each one sends its
local model to the server for storage and tracking. Next, the
server aggregates all the knowledge from the local models and
generates a global model. Then, the server sends this model
to each wearable IoT device through the fog nodes for further
data analysis. We investigated the feasibility of our platform
by simulating the intended data flow of our design and the
effectiveness of our federated learning system. Lastly, our
implementation aims to provide a low-cost setup that simulates
our platform under a resource-constrained environment. We
presented a top-down view of our architecture and its data
flow. The following details will encompass the other design
choices we made for further establishing the predictive health-
care service that our design models.
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B. Dataset and Neural Network

To establish the predictive healthcare service our platform
will use to test its feasibility, we looked for a dataset and
neural network configuration that fits our remote monitoring
data flow. We chose a standard classifier design and organized
the dataset to minimize its impact on our platform experi-
ments. Our focus is on the effectiveness of our platform in
securing wearable IoT device data and ensuring the integrity
and flexibility of the healthcare service, and not maximizing
the accuracy of the classifier. Therefore, the classifier we
used in testing our platform is for human activity recognition
(HAR). It uses accelerometer data from various commercial
wearable IoT devices such as smartphones and smartwatches
to determine the posture and condition of each user [34].
Healthcare services use these to monitor the safety of their
patients. For example, it can detect the falling pattern of a
person and enable real-time response. Also, they can monitor
people’s daily exercise and regimen for further consultation
and improvements for their health [35]. Similarly, we will
use it to simulate patient data for training HAR models to
better reactive analysis and accident detection in wearable IoT
device-based remote monitoring.

The dataset we selected is the Human Activity Recogni-
tion Using Smartphones Data Set from the UCI Machine
Learning Repository [36]. It is from an experiment with 30
volunteers within 19-48 years. Each individual performed
six activities: walking, walking upstairs, walking downstairs,
sitting, standing, and lying down. Each volunteer did each
action wearing a Samsung Galaxy SII smartphone on their
waist. The result is a dataset that contains 10299 instances
of 3-axial linear acceleration and 3-axial angular velocity
captured from the accelerometer and gyroscope of the mobile
device. It encompasses 561 labelled features with time and
frequency domain variables. We chose this classifier and
dataset combination because the data is from smartphones,
which is more common to the public. This selection provides
a better dataset scope that represents a larger population. Our
focus is on the federated learning aspect of the design. We
can minimize any impacts of extraneous variables that could
interfere with our experiments and the precision of its results
by using an already tested and documented classifier. Using it
provides convenience and efficiency as we simulate the HAR-
based predictive service testbed for our experiments.

We implement a one-dimension convolutional neural net-
work (CNN) because the dataset is a sequence with only a
single-dimensional source. Also, it is a design that minimizes
the overall processing requirement when training and testing
the model. Since we aim for a low-cost approach, we intend
to limit the impact of resource requirements. We coded it
using a combination of the Keras and Tensorflow libraries
in Python. The dataset was already pre-grouped to have a
70-30 split for training and testing. We use the same split
when training and testing our CNN to avoid generating any
significant impact from the nature of the classifier or the data.
Also, we refrained from potentially over-tuning the CNN by
only calibrating through the epoch number. We wanted to
ensure that the experiments focused on the performance of

the federated learning aspect of our design.

C. Federated Learning Implementation

We implemented the federated learning aspect to incorpo-
rate distributive learning with the HAR predictive model. We
used the previously presented CNN as the learning model for
our cloud and fog device. The target of the adopted CNN
is to learn from various human activities using accelerometer
and gyroscope data. The result is a HAR model for potential
anomaly detection in patient movement and activeness. Fed-
erated learning aims to solve for an optimal global model wG

that minimizes the weighted average loss of all clients. It takes
the global loss function L and simplifies it into a summation
of losses obtained from the local models wL of each client
shown in the following:

wG = argmin
wL

L(wL) = argmin
wL

[
1

K

K∑
k=1

Lk(wL)

]
, (1)

where Li is the local loss function by client k. We translated
the solution for this federated learning problem as a python
script executed by the central server. It starts by iterating
through each local model we obtained through the fog devices.

Next, we extract the weights of each model and optimize
them by scaling them according to the total number of clients
and their accuracy. We optimized our weights by giving the
model with the highest accuracy the best scaling factor and
gave the rest lower scale values relative to the number of
total fog clients in the network. This scaling scheme ensures
that the best-performing local model is the base, and the rest
are additional references for further learning reinforcement.
While scaling, the server generates a CNN with the same layer
design. Then, the script aggregates the optimized weights via
averaging, takes the resulting solution, and sets it into the
prepared model, which becomes the global model. This model
encompasses all the knowledge obtained from each locally
trained CNN. A graphical representation that shows the flow
of our federated learning system is in Fig. 2.

D. Private Blockchain Implementation

We incorporated a private blockchain to manage the training
information shared by the devices that will train the HAR-
based predictive model. The blockchain protocols create an
access level ensuring that only trusted devices can access
the predictive model’s local training and global knowledge.
We coded it in Python. Each block is a class definition that
contains an ID, a list of training model results, and a hashed
string of the previous block. The private blockchain authorizes
communication between the server and the client based on
their assigned ID. Also, it collects the locally trained models
and stores them periodically within a block. These blocks
are chained cryptographically by generating a hash of the
previous block and storing it within the new one. The resulting
data structure is a log of every training model sent to the
server and the other actions the network carried out. The
blockchain becomes a hyperledger that stores the history of
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Fig. 2: Flow of operations for our implemented federated
learning system within our platform.

every operation done by the network. Also, since it is tamper-
proof, these records are protected. We also initialize copies
of the blockchain and distribute them to each client to keep
the data decentralized and free from manipulation outside
the authorized devices. This distribution allows the service
to check the validity of each client and the local models they
are training and sending to the server.

With the private blockchain, the information and operation
within the network remain secure. Tampering becomes more
difficult with the hyperledger keeping track of all the changes
to the global model. It can record the results of each local
training through the obtained models from the fog clients.
Also, private and raw data from the clients are not sent to
the server, keeping them secure from any form of leakage or
malicious attacks. Overall, the blockchain sets up the network
by securing its endpoints and reinforcing its decentralization.

E. Hardware and Software Specifications

To simulate the predictive service based on the HAR model,
we selected hardware that fits our aim to have a low-cost
design. Our setup makes use of Raspberry Pi 3 Model Bs.
We chose Pis due to their portability, programmability, and
modularity for rapid programming. Also, we selected a low-
cost and low-end device to simulate the capabilities of most
wearable IoT devices. Each Pi has a Quad-core ARM Cortex
A53 processor that runs on a benchmark of 1.2 GHz. Our
focus is on model accuracy while processing speed is currently
not a concern. We also used Pis for both the fog devices and

the central server of our design. Each Pi is pre-loaded with a
Raspbian-Jesse operating system. We installed Python 3.6 on
every Pi as our programming language due to its flexibility and
diverse selection of open-source labels. The selected version is
the most recent version that works with all the Python libraries
needed for our design. As for the wearable IoT device that
represents the edge of our network, we based it on the same
smartphones from the HAR dataset we chose to use. It is a
Samsung Galaxy SII that uses a Dual-core 1.5 GHz Scorpion
processor.

IV. RESULTS AND DISCUSSIONS

We tested our proposed platform to evaluate its feasibility
by addressing data analysis security, integrity, and flexibility.

A. Testbed

We structured our testbed to simulate data flow from the
fog to the cloud server. It is to observe the behaviour of
our platform under the standard network interactions of local
and central servers of a fog-IoT network. In designing our
testbed, we use low-cost and low-end devices to evaluate our
design under minimal processing capabilities. We chose this
approach to show the feasibility of our proposal when using
simple IoT devices. It gives an estimate for a benchmark on
the minimum system requirements for our implementation. We
decided to use Raspberry Pi 3 Bs to model the fog devices
because it is modular, portable, and low-cost. During the early
stages of implementation, we discovered that the Pi could run
the classifier training and the blockchain scripts without any
issues. Therefore, we continued to use Pis as both the fog
and the cloud servers in our network. Another reason why
we chose to stay with just one type of technology was to
limit the potential impact of any processing or data capacity
advantage if we used a device with a better processor as a
server. Since Pi’s are modular, we replicated each node by
flashing an identical copy of the operating system to each
device. As a result, we arranged the network to have a Pi as
the cloud server with 10 Pis that serve as the fog nodes.

First, we assume that each fog server already contains the
wearable IoT device data, so the training and testing dataset
is pre-loaded in each Pi. Since our focus is on the federated
learning aspect carried out by the fog-IoT servers, we can skip
the simulations of data transmissions between the wearable
and the fog devices. Next, each fog device will train its models
locally and send them to the central cloud server via wireless
file transfer. The server will wait until it receives all the local
models before the next step. Next, it will aggregate the weights
of each model and scale it according to its accuracy. We
implemented a scaling scheme that gives the highest possible
scaling factor to the local model with the highest accuracy. At
the same time, the rest of the models will receive the same
scaling factor but are significantly lower. Then, the server will
take the resulting scaled weights and set them on a structurally
identical CNN, resulting in the global model. For our test, we
plan to compare the accuracy of the global model with the
average of the locally trained models from each fog device.
We elected to use this metric to evaluate the behaviour of
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Fig. 3: Sample training and validation loss of one local model
yielding a testing accuracy of 90.43%.

our platform. Also, we aim to ensure that our implemented
federated learning system does not disrupt the integrity of the
classifier. Finally, to investigate the security and adaptability
of our design, we later discuss the strengths of our platform
that we observed as we tested and simulated the platform.

B. Integrity Evaluation via Training Model Accuracy

Our test investigated the ability of our platform to maintain
the integrity of the predictive data analysis of the classifier
within the healthcare network. We used a 1D CNN to classify
HAR using the HAR dataset from the UCI Machine Learning
Repository. We chose to evaluate the feasibility of our design
by comparing the accuracy between the global and the local
models.

First, we trained the model locally using 10 Pis pre-loaded
with the classifier and the dataset. We arranged the models
by assigning a number to each corresponding client. The
fog devices trained each local model using the same 70%
split of the dataset. Also, we tested each model with the
remaining 30% of the dataset. We tried to minimize the
complexity of our classifier and focused on the performance
of our federated learning system by doing the minimal tuning.
The only parameters we tinkered with were the epoch number
and the batch size, which we set to 10 and 8, respectively.
The resulting model yielded a 90.43% testing accuracy. We
generated its validation-to-training loss and accuracy plots
as shown in Fig. 3 and Fig. 4, respectively. These results
are a sample of 1 out of 10 fog clients. Each presents
the reasonable validity of the classifier at minimal tuning
in correctly identifying the different labelled human actions
based on accelerometer and gyroscope data.

Upon further analyzing these graphs, we observed a spike in
the validation loss on epoch 6 of Fig. 3. This behaviour is due
to the learning rate causing the trained model to be volatile at
this point. Since the graph stabilizes, it does not significantly
impact the overall model. Also, there is a similar spike on
epoch 5 of Fig. 4. This behaviour could reflect potential

Fig. 4: Sample training and validation accuracy of one local
model yielding a testing accuracy of 90.43%.

Fig. 5: Confusion matrix of testing the global model with
aggregated weights from 10 local models.

volatility within the dataset. However, since the amplitude of
the fluctuations is within a reasonable range of +/- 2% from
the median, it shows that the data’s volatility is not significant
enough to render the model inaccurate.

Overall, each trained model yielded similar behavioural
trends but had varying final accuracy values within a range
of +/- 1.28% from the median. This range shows the impact
of the data on the accuracy of the model. However, it is not
significant enough to invalidate the training results. Therefore,
we took the average of their performances and used it to
represent the benchmark of the classifier for each collective
number of clients. After getting the average accuracy of
the local models, we compared it with the global model to
evaluate our implemented federated learning system.

First, we generated the global model for each N number
of clients. We have a visualization of our global model’s
performance after aggregating the weights of local models
from 10 clients through the confusion matrix in Fig. 5. Next,
we compared the average accuracy of the N local models
to their corresponding global models. This method allows
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Fig. 6: Difference in testing accuracy between global model
and average local model as the number of clients increases.

us to see the model’s ability to keep up with the average
performance of a collection of locally trained models. We
obtained the average accuracy of the local models while
increasing the number of clients. Then, we generated their
corresponding global model and recorded its accuracy.

Finally, we plotted the comparison between the accuracy
of the global model and the averaged local model shown
in Fig. 6. Based on the results, we can observe that as the
number of clients increases, the accuracy of the global model
keeps up and even eventually performs better than the average
accuracy of its local models. Through this observation, we can
see the ability of our implemented federated learning system to
minimize any loss from aggregating weights. We can attribute
this improvement in accuracy to our optimization scheme that
assigns a higher scaling factor for the local model with the
best performance. Also, we can see how the accuracy of the
global model peaks at 91.75%.

We can conclude that our scaling scheme can maximize the
classifier’s performance by prioritizing the local models that
yield the best results. Also, the platform performed effectively
even with the low-cost devices functioning as servers. There-
fore, we can further reinforce the argument that our design
can be scalable and efficient even under resource constraints.
Since the Pis are modular and portable, our platform can cover
remote monitoring applications constrained by distance and
mobility. Overall, this shows the potential of our design as
an effective and scalable approach that can benefit wearable
IoT device-based predictive healthcare even with resource
constraints.

C. Security and Adaptability Analysis

The following is an analysis of the security and adaptability
of our design. Each evaluation is from observations from our
simulations and testing:

1) Security: Our design choices aim to preserve the data
privacy of wearable IoT devices. Federated learning allows
us to keep raw data from leaving the local network. Since
only the models are transmitted, limiting potential leakages

protects the data of wearable IoT devices. With blockchains,
our platform can create a more exclusive network where
only trusted devices can send data to the cloud server. As
a result, the hyperledger can reduce the endpoints that ex-
pose the server to malicious attacks such as spoofing and
impersonation. Also, this can reduce the threat of Denial of
Services (DoS) attacks. Since the blockchain can regulate
which devices can actively communicate with the server, it
can serve as a rate limiter for any targeted attack. Blockchains
provide an extra level of security due to their built-in access
control and cryptographic structure. Overall, each technology
integrated into our platform can preserve the data privacy of
wearable IoT devices.

2) Adaptability: Based on our observations, our fog-based
IoT architecture was able to aid in implementing both feder-
ated learning and blockchain technology with ease. We can
attribute it to the decentralized structure of fog-IoT. Due to
the fog architecture, both technologies can perform optimally
under this network arrangement and utilize their strengths.
Device diversity causes network strains due to the constant
demand for updates and maintenance. However, federated
learning reduces this strain by standardizing transmitted in-
formation into a uniform package. This package is the locally
trained model. Lessening the demand for the cloud server to
keep up with the latest wearable device allows it to focus on
deploying services efficiently while keeping up with the most
recent global knowledge. As long as the classifier structure
remains uniform, the server only needs to regenerate the same
model with different weights. As a result, the regeneration and
aggregation become modular to the service. This modularity
contributes to the adaptability of the network. It enables the
use of other classifiers and wearable IoT device groups.

Keeping the network decentralized through the fog also
allows better clustering. This design reduces the time required
to update all its servers and devices. For instance, take a
heterogeneity equation H based on the distribution of worker
update time ϕw presented in the following:

H = 1− 1

W − 1

W−1∑
w=1

ϕW

ϕw
, (2)

According to Eq. 2, a higher worker count W lowers the
overall heterogeneity H of the network. Also, we assume
that ϕW = Min(ϕ1...ϕw). This assumption means that the
heterogeneity value of the network is proportional to how
spread out is the update times of each worker. The higher this
value H , the lesser the network is impacted by the updates
times of its devices. In a standard cloud IoT network, the
number of workers equals the number of wearable IoT devices
it holds. As a result, the heterogeneity value will be high
due to the diversity of the wearable devices connecting to the
server. With varying update times, the

∑W−1
w=1

ϕW

ϕw
term will

be asymptotic to 0. When plugged in the rest of the equation,
the heterogeneity value is maximized and asymptotic to +1.
The closer this value is to 1, the more heterogeneous the
network. Our fog-based IoT approach allows us to reduce the
impacts of the update time of each worker by standardizing
them. Instead of having each wearable IoT device as a separate



9

worker, they are clustered by the fog device and become the
new worker. With standardized devices, the

∑W−1
w=1

ϕW

ϕw
term

will be asymptotic to W . When plugged in the rest of the
equation, the heterogeneity value is minimized and asymptotic
to -1. The closer this value is to -1, the less heterogeneous
the network. Ideally, we aim to minimize the heterogeneity
value to indicate a network less affected by the diversity of
its worker’s update times.

With our experiments, the update time is each fog device’s
training and communication time. We can observe in the
testbed design that having a distributive arrangement can
reduce the impact of the diversity of wearable IoT devices
on the overall update time by offloading the training and
processing to the fog. Instead of many wearable IoT devices
that can yield varying update times, sending training data to
the cloud server can be standardized. So theoretically, we can
infer that our platform will result in a lower heterogeneity
value. This analysis highlights the benefits of the distributive
approach that we proposed.

Also, the resulting accuracy of the global model presents
how the precision of the predictive healthcare service is
not affected by the shift in the location of the learning
process. Since the edge device is only required to send data
securely, it does not need standardization as long as the fog
device is aware of the data it receives. Also, having one less
complex process within a sensing device makes its design
more robust. Removing this constraint helps the server keep
up with the constant introduction of new wearable IoT devices
by simplifying the data flow within the network. This change
creates a more adaptable network that can cater to a diverse
pool of wearable IoT devices.

D. Future Work and Recommendations

Further improvements to the design can be using other
metrics for testing. Another performance metric we can
include for future iterations can be the propagation delay
between the fog and the cloud when transporting the training
model results. This addition introduces potential dynamic
scenarios that further test the mobility and reach of our
platform. Another metric could be the power consumption
of the servers. The coverage of servers must reach remote
areas in extreme cases of predictive healthcare. As a result,
more portable and power-efficient designs are in demand for
sustainability and longer service uptime. This design addition
introduces the potential design and device optimizations that
make the platform more cost-efficient while managing the
predictive healthcare service. Another improvement is to test
the platform with more than one neural network design and
dataset. This addition can further emphasize our platform’s
modularity and performance under different configurations.

V. CONCLUSION

We propose a platform that addresses the issues of data
privacy, service integrity, and network structure adaptability
of wearable IoT devices in predictive healthcare. We used
federated learning for its ability to effectively aggregate local
models into a global entity to ensure the integrity of the

predictive service. We further incorporated private blockchain
technology to reinforce the overall network security. Lastly,
we have fog-IoT as the base for offloading and process redis-
tribution. By evaluating the implemented federated learning
system in terms of model accuracy, we observed its feasibility
in maintaining the integrity of the HAR classifier. Next, we
discussed the effectiveness of our platform even when using
a low-cost and low-end device as its fog and cloud server.
Then, we analyzed our design choices and highlighted its
strengths in terms of privacy preservation, security, and net-
work adaptability. Overall, through our testing and evaluation,
we saw the feasibility and potential of our proposed platform
in addressing the security, integrity, and adaptive issues of
wearable IoT devices in predictive healthcare.
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