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Abstract—Device monitoring services have increased in pop-
ularity with the evolution of recent technology and the contin-
uously increased number of Internet of Things (IoT) devices.
Among the popular services are the ones that use device location
information. However, these services run into privacy issues
due to the nature of data collection and transmission. In this
work, we introduce a platform incorporating Federated Kalman
Filter (FKF) with a federated learning approach and private
blockchain technology for privacy preservation. We analyze the
accuracy of the proposed design against a standard Kalman
Filter (KF) implementation of localization based on the Received
Signal Strength Indicator (RSSI). The experimental results reveal
significant potential for improved data estimation for RSSI-based
localization in device monitoring.

Index Terms—Machine learning, Federated learning, Dis-
tributed processing, Blockchain, Internet of Things, Data privacy,
Privacy-preserving, Predictive models, Localization, Tracking.

I. INTRODUCTION

The integration of Internet of Things (IoT) devices in
monitoring services increased due to their ability to automate
and remotely control technologies, usually through a shared
wireless network [1]. IoT devices collect and transmit data to
a server and use the information for various remote services,
including monitoring and tracking. An example is device
monitoring through localization using the Received Signal
Strength Indicator (RSSI). The server uses the RSSI data
collected from IoT devices to estimate their relative location
to the network [2]. This service allows networks to monitor
which devices exist within and around them and ensure that
only recognized devices have access.

However, these monitoring services pose significant chal-
lenges to users’ data protection [3]. These services require
user data to be effective in accounting for all devices within
the network while, at the same time, the devices are prone to
potential leakages and theft. To cope with this privacy chal-
lenge, in this work, we introduce a platform using Federated
Kalman Filter (FKF) with a Federated Learning (FL) approach
and blockchain technology to keep the data from users private
and protected. These technologies show great potential for
the privacy preservation of data [4], [5], without a significant
increase in the system complexity.

II. BACKGROUND AND MOTIVATION

A. IoT-Based Device Monitoring
A device monitoring service is an automated system that

monitors the users connected to a network using heteroge-
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neous, wirelessly interconnected devices and sensors [3], [6].
It uses the data it collects to automate and regulate the different
aspects of the network’s environment. The network can then
use the information for services such as access control and
authorization of users within it [7].

However, due to issues in wireless communication, device
monitoring services pose data security challenges [8]. Since a
large amount of data exchange is required for these services to
be effective, the continuous transmission of information across
the network creates security vulnerabilities and breaches in
user privacy. For instance, device monitoring services use
RSSI-based localization to ensure that only trusted devices can
access the network within its defined proximity [2]. However,
the RSSI data is directly from the user’s IoT devices. This
traceable connection introduces a vulnerability and exposes
the IoT device to malicious attacks such as data theft and
spoofing. As a result, privacy preservation is significant in
keeping the system effective while ensuring data is secure
within the network [9].

B. Federated Kalman Filter with Federated Learning

We selected an FKF with an FL approach to incorporate
within the device localization system to ensure the preservation
of patient privacy. An FKF is a distributive data fusion and
filtering method using Kalman Filtering (KF) as the base [10].
A KF is an estimating algorithm for linear systems. KFs are
an ideal estimating algorithm for localization data due to the
linearity of the distance and localization via RSSI [11]. FKF
maximizes the dynamic estimation of KFs by creating parallel
filters that aggregate local results to generate a global model.

An FKF separates the filtering process globally and locally.
The local filter consists of a modified KF that uses values
provided by the global filter. It has two steps; the prediction
and update steps. The prediction step estimates a system’s
next state estimate Ĝ8 (:+1) and covariance values %8 (:+1) in
its current time index, : . In an FKF implementation, each Ĝ8
and %8 is indexed based on the number of local filters that
exist in the system where 8 = 1, ..., # , as:

Ĝ8 (:+1) = �8: Ĝ8: + �8:D8:

%8 (:+1) = �8:%8:�
)
8: +&8:

(1)

It uses index 8 and the total number # of the local filter
within the system. Also, a system model �, measurement
model �, control input D, and noise covariance &. The up-
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dating step first solves the Kalman gain  using measurement
sensitivity � and measurement error covariance ', as:

 8 (:+1) = %8 (:+1)�
)
8 (:+1) (�8 (:+1)%8 (:+1)�

)
8 (:+1) + '8 (:+1) )

−1

(2)
The resulting values are the local filter’s state estimates and

covariance values. This finalization process that incorporates
the measured input I is:

Ĝ8 (:+1) = Ĝ8 (:+1) +  8 (:+1) (I8 (:+1) − �8 (:+1) Ĝ8 (:+1) )
%8 (:+1) = (1 −  8 (:+1)�8 (:+1) )%8 (:+1) (1−

 8 (:+1)�8 (:+1) )) +  8 (:+1)'8 (:+1) 
)
8 (:+1)

(3)

Usually, this recursive filtering process will result in an
estimated representation of the filtered data. However, what
makes this KF federated is the additional distributive steps
around the prediction stages of the local filter. Instead of
using the calculated state estimates Ĝ8: and covariance %8:
values from the update stage for the following prediction stage
calculations, the local KFs will use the values provided by the
global filter. This information is defined and divided among
the local filters given

∑# ,"

8=1 V8 = 1 where &8: = (1/V8)&: ,
%8: = (1/V8)% 5 : and Ĝ8: = Ĝ 5 : .

The local filter equations will use these equations to calcu-
late the local state estimates Ĝ8: and covariance %8: values.
These numbers are then sent to the global filter to obtain the
final state estimates Ĝ 5 : and covariance values % 5 : for the
next iteration. First, the global filter calculates its state estimate
Ĝ": and covariance value %": . Next, it calculates the final
state estimate using the same values as:

%−1
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Our proposed design differs from standard FKFs by intro-
ducing an FL approach. The federated aspect of FKFs usually
points towards their distributive properties. The FL approach
is a machine learning technique using a decentralized strategy
to utilize global knowledge for training and tuning its models
and filters [12]. Its strength is in effectively preserving the
privacy of data. We incorporate it by creating an adaptive loop
that enables a real-time KF process within the local filters.
Also, we take out the reference signal going to the local filter
because, in our FL approach, we adjust global variables to
tune the filtering process, similar to training a model based
on a known relative distance between the local and the global
filters.

C. Private Blockchain

We integrated blockchain technology to complement the
FKF in preserving data privacy within the device localization
system. Blockchains are data blocks that are cryptographically
linked [13]. We use it as a distributive and tamper-proof
ledger that stores and manages historical records of data
transactions [14]. Due to its immutability, the blockchain
makes it harder to modify the information it holds. Also, its

distributive architecture provides multiple backups, reinforcing
the confidence in the data structure securing information. Con-
ventionally, there are two blockchains; public and private [15].
A public blockchain implements a trustless protocol and uses
an algorithm to require proof of work (PoW) from devices
to compute before it grants them access [16]. However, this
requirement demands high processing power, which is not
ideal for IoT devices since they are usually cost-efficient
with limited computational and limited capabilities. A private
blockchain implements a trusted ledger for consulting pre-
defined members when granting access [17]. However, its size
impacts the overall processing speed of the blockchain when
managing its users.

We use a private blockchain in our implementation because
it fits our proposed small-scale approach. Since IoT devices are
usually low-cost and prioritize power consumption, reducing
the processor demand can contribute to the overall sustainabil-
ity of the device monitoring service within the IoT system. The
PoW required by public blockchains can cause complications
in implementing the platform due to the latency it might add.
Using a private blockchain removes the latency from PoW
processing, allowing more leeway for processes from the FKF.
Also, since the list is exclusive, the ledger will not be too
large to impede the blockchain from carrying out its protocols.
There will not be any additional processing required whenever
a user attempts to access the server since known users are
already within the ledger. With private blockchains, the overall
network remains manageable for smaller-scale localization
systems. Our proposed platform ensures that the RSSI values
do not leave the local filters because only the predictive values
go to the global.

III. PROPOSED PLATFORM

A. Overview

The proposed platform is an RSSI-based localization im-
plementation using FKF and blockchain technology for IoT-
based device monitoring. We aim to address the security issues
within these systems due to the potential data leakages in
the network. The FKF, with an FL approach, adds a layer
of privacy to the network by keeping user data local to the
source. This arrangement ensures that information is kept
private from the server. As a result, our system preserves data
privacy while keeping the localization service effective. The
private blockchain will reinforce the distributive network with
its cryptographic and tamper-proof features. This addition adds
a detection layer by introducing immutability and decentral-
ization, resulting in better defences against malicious attacks.

The plan is to implement the proposed platform as a low-
cost approach for improving the security of RSSI-based local-
ization for IoT-based device monitoring. First, the cloud server
contains the global FKF and a copy of the private blockchain.
The global filter will manage the filtering parameters the local
filters will send. Also, the private blockchain will contain
a list of the ID of trusted fog devices, ensuring that only
permitted fog devices can transmit data to the cloud. Next,
the fog server has the global FKF and a copy of the private
blockchain. This device manages the RSSI data collected from
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Fig. 1. Data flow of proposed RSSI-based localization platform using FKF
and private blockchain technology.

the IoT devices. Lastly, the edge devices are the IoT devices
that provide the RSSI data to the fog. The local filter uses this
data for triangulating these IoT devices and their localization
relative to its fog server. A diagram that shows data flowing
from the edge to the cloud and a conceptual setup of our
implementation is in Fig. 1.

B. System Components

There are three design components: the cloud, the fog, and
the edge. The cloud includes a laptop with an Intel® Core™ i7
processor running on Windows 10. This device choice min-
imizes the impacts of energy consumption on the system by
providing a more than capable but portable cloud server to
manage the FKF. Next, fog devices use Raspberry Pi 3 B as
their central server for device management and RSSI filtering.
Since Pis are low-cost, portable, and modular, selecting it as
the fog device further reduces the platform’s overall energy
consumption. Each Pi runs on a Raspian Jesse OS image. Also,
we programmed all the scripts it uses using Python 3.6. The
edge device is a Google Pixel 6 phone as the source of RSSI
data for triangulation and localization. We programmed the
FKF and the private blockchain as Python classes that each
cloud and fog server initializes.

The private blockchain class programmed in Python is
loaded and initialized within the fog and cloud devices to
regulate the data flow and user authorization within the servers.
The design of the blockchain implementation contains separate
block classes. Each block has part of the list of trusted IoT
devices and their IDs. The cloud and fog devices will consult
this ledger like a look-up table whenever a device attempts
to access or send data. It will manage the data flow if the
blockchain acknowledges the device.

The FKF has two components; the global and local filters.
First, we programmed the local filter class within the fog

servers. It receives the RSSI data from the edge devices
and uses it to triangulate their location through localization.
Next, the local filters send the corresponding state estimate
and covariance variables to the global filter within the server.
The global filter aggregates these values and generates their
weights. Finally, it sends these values to each local filter for
the following filtering iteration.

IV. EXPERIMENTAL RESULTS

A. Testbed

We designed a testbed to examine our proposed RSSI-based
localization platform. It compares our FKF design against
standard KFs to determine its ability to keep data filtering con-
sistent and accurate while preserving data privacy. The metrics
we used to measure the accuracy are localization reliability and
prediction precision using Root Mean Squared Error (RMSE)
and the RSSI prediction accuracy. We calculated the RMSE
through the following equation:

'"(� =

√∑=
8=1 (%A4382C438 −$14B4AE48)2

=
(5)

Also, we calculated the RSSI accuracy through a percent
accuracy formula defined as:

'((�022 =

(
1 −

����)ℎ4>A4C820; − "40BDA43)ℎ4>A4C820;

����) ∗ 100% (6)

The lower the RMSE and the higher the RSSI prediction
accuracy, the more accurate the filter’s estimation. We chose
localization reliability and prediction precision because these
can evaluate and measure our proposed design’s ability to filter
RSSI data precisely and consistently localize devices. Also,
we further analyze the performance of the proposed method
by comparing the computational complexity. We arranged our
testbed to have four local filters and a global filter. The
global filter is within the central server of the platform. The
local filters within fog devices will receive the RSSI values
via WiFi signal strength from the edge devices. We situated
these fog servers around a room as triangulation anchors for
the localization system. The edge device is placed close to
this perimeter at a known distance to provide the RSSI for
analyzing the KF precision.

B. Performance of Global Filter compared to Local Filter

This experiment has two configurations: the FKF and the
standard KF. The FKF configuration is our proposed platform,
while the standard KF configuration does not have the central
server to send its parameters. All KFs use a path loss factor
of 2.00 and a system loss constant of 57 for the distance
calculations. Also, the known distances between the edge
and fog devices are 1, 1.5, 2, and 2.5 meters. We take the
average RMSE to represent the localization reliability of the
configuration for each known distance. The plot showing the
RMSE values from each experiment iteration is in Fig. 2.
We can observe through it that the RMSE values of the FKF
method were lower overall compared to the standard KF. This
observation suggests that the FKF has a more consistent and
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Fig. 2. RMSE calculation of FKF and SKF configurations at known distances
between the fog servers and the edge device.

reliable localization filter. Also, it shows that the proposed
method is more capable of accounting for spikes in RSSI.

Meanwhile, the average accuracy of the standard KF and
FKF was 89.85% and 87.56%, respectively. We can attribute
the higher RSSI from the standard KF to the global KF having
to aggregate data from the local KFs causing the weights
to affect the prediction process. This calculated accuracy is
relative to the measured value. So, a slightly higher percentage
does not mean a significantly accurate filter. Considering the
volatility of RSSIs, the FKF maintaining a close predictive
accuracy with the standard KF, even with the added weight
aggregation, further reinforces its feasibility. Also, the lower
RSME suggests a less consistent filter when dealing with
sudden spikes in the RSSI data. Although the estimates of the
KF are slightly closer to the measurements, its localization is
less stable. Also, a 2% difference is insignificant for RSSIs
since they are always whole numbers within the 50-60 dBm
range. Therefore, these results present the FKF as a more
reliable and equally precise option.

In terms of complexity, we can present the computational
costs of a standard KF as $ (=3

< + =2
?) considering the mea-

surement =< and prediction =? phases. The complexity of the
measurement phase is higher due to more matrix inversions.
The localization process =; goes through each predicted value.
So, it increases the cost to $ (=3

< + =2
? + =2

;
). For the FKF, it

is the same. However, we move the prediction stages to the
global filter. The result is a complexity that we can split into
$;>20; (=3

<+=2
;
)+$6;>10; (=2

?). Also, the assigning and calculat-
ing weights =F is carried each for each prediction, increasing
the complexity to $;>20; (=3

< +=2
;
) +$6;>10; (=2

? +=2
F ). We can

observe that even with the reallocation and added processes,
the overall computational costs do not change. Also, the added
global filter has a more capable processor, which lowers the
impact of its computational costs on the overall method.

V. CONCLUSION

The proposed platform combines an FKF with an FL
approach and a private blockchain with RSSI-based localiza-

tion for device monitoring services. It introduces a security
layer that ensures privacy preservation through the FKF and
FL combination and access authorization through the private
blockchain within the monitoring service. We evaluated our
proposed design’s localization reliability and prediction preci-
sion against a standard KF using RMSE and RSSI prediction
accuracy. Also, we discussed the computational costs of each
method. Each evaluation investigated if the service’s integrity
is maintained even after adding the FL process. With the FL
and blockchain adding security, we observed better overall
accuracy from the proposed RSSI-based localization system.

REFERENCES

[1] M. O. Farooq, I. Wheelock, and D. Pesch, “Iot-connect: An interop-
erability framework for smart home communication protocols,” IEEE
Consumer Electronics Magazine, vol. 9, no. 1, pp. 22–29, 2020.

[2] V. Bianchi, P. Ciampolini, and I. De Munari, “Rssi-based indoor
localization and identification for zigbee wireless sensor networks in
smart homes,” IEEE Transactions on Instrumentation and Measurement,
vol. 68, no. 2, pp. 566–575, 2019.

[3] W. Iqbal, H. Abbas, B. Rauf, Y. A. Bangash, M. F. Amjad, and
A. Hemani, “Pcss: Privacy preserving communication scheme for sdn
enabled smart homes,” IEEE Sensors Journal, vol. 22, no. 18, pp.
17 677–17 690, 2022.

[4] B. Zhao, K. Fan, K. Yang, Z. Wang, H. Li, and Y. Yang, “Anonymous
and privacy-preserving federated learning with industrial big data,” IEEE
Transactions on Industrial Informatics, vol. 17, no. 9, pp. 6314–6323,
2021.

[5] M. Abouyoussef and M. Ismail, “Blockchain-based privacy-preserving
networking strategy for dynamic wireless charging of evs,” IEEE Trans-
actions on Network and Service Management, vol. 19, no. 2, pp. 1203–
1215, 2022.

[6] M. J. Baucas, S. A. Gadsden, and P. Spachos, “Iot-based smart home
device monitor using private blockchain technology and localization,”
IEEE Networking Letters, vol. 3, no. 2, pp. 52–55, 2021.

[7] Z. N. Mohammad, F. Farha, A. O. M. Abuassba, S. Yang, and F. Zhou,
“Access control and authorization in smart homes: A survey,” Tsinghua
Science and Technology, vol. 26, no. 6, pp. 906–917, 2021.

[8] R. Heartfield, G. Loukas, A. Bezemskij, and E. Panaousis, “Self-
configurable cyber-physical intrusion detection for smart homes using
reinforcement learning,” IEEE Transactions on Information Forensics
and Security, vol. 16, pp. 1720–1735, 2021.

[9] L. Ardito, L. Barbato, P. Mori, and A. Saracino, “Preserving privacy in
the globalized smart home: The sifis-home project,” IEEE Security &
Privacy, vol. 20, no. 1, pp. 33–44, 2022.

[10] X. Xu, F. Pang, Y. Ran, Y. Bai, L. Zhang, Z. Tan, C. Wei, and
M. Luo, “An indoor mobile robot positioning algorithm based on
adaptive federated kalman filter,” IEEE Sensors Journal, vol. 21, no. 20,
pp. 23 098–23 107, 2021.
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