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Abstract—Stress is an inevitable part of modern life.
While stress can negatively impact a person’s life and
health, positive and under-controlled stress can also enable
people to generate creative solutions to problems encoun-
tered in their daily lives. Although it is hard to eliminate
stress, we can learn to monitor and control its physical
and psychological effects. It is essential to provide feasi-
ble and immediate solutions for more mental health coun-
selling and support programs to help people relieve stress
and improve their mental health. Popular wearable devices,
such as smartwatches with several sensing capabilities,
including physiological signal monitoring, can alleviate the
problem. This work investigates the feasibility of using
wrist-based electrodermal activity (EDA) signals collected
from wearable devices to predict people’s stress status
and identify possible factors impacting stress classification
accuracy. We use data collected from wrist-worn devices
to examine the binary classification discriminating stress
from non-stress. For efficient classification, five machine
learning-based classifiers were examined. We explore the
classification performance on four available EDA databases
under different feature selections. According to the results,
Support Vector Machine (SVM) outperforms the other ma-
chine learning approaches with an accuracy of 92.9 for
stress prediction. Additionally, when the subject classifica-
tion included gender information, the performance analysis
showed significant differences between males and females.
We further examine a multimodal approach for stress clas-
sifications. The results indicate that wearable devices with
EDA sensors have a great potential to provide helpful in-
sight for improved mental health monitoring.
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EDA, wearable sensors, wrist-worn wearable device,
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I. INTRODUCTION

W ITH the rapid development of modern society, people’s
understanding of health is no longer limited to physical

health but extends to open concepts such as mental health and
social adaptation. With good mental health, people can have a
solid attitude to fulfill family and social responsibilities, actively
find solutions to problems, and positively plan for the future.

Currently, medical workers and researchers focus on interven-
tions and treatments for existing mental issues and symptoms.
However, less-obvious stress and anxiety should also be noticed.
Before stress is high enough to alert people to visit a doctor, the
body and brain are already sending signals to help people know
what needs to be changed. These signals include the inability
to concentrate, memory loss, unstable emotions, impatient, rest-
lessness, etc. When people experience these physical and mental
reactions to stress, their physiological signals also change. For
instance, in [1], they found that stress responses such as respi-
ration rate, heart rate, and electrodermal activity (EDA) signals
increased when a sound of an air horn rang suddenly. Therefore,
learning the corresponding relationships between the changes
in different physiological signals and stress is significant for
identifying stress. Meanwhile, utilizing objective scientific and
technological means to help monitor the physiological signals
and analyze the responses has become an important research
topic in academia and industry.

Wearable technology is a promising solution for remote and
continuous mental health monitoring. Wearable devices can
capture rich contextual information and deliver a large amount
of personal patient data. At the same time, the advantages of
machine learning have increased data processing speed and
provided better data insights. Among the popular wearable
devices are smartwatches, that act as mini smartphones with
promising computational capabilities, while they also have many
sensors that can collect physiological signals, including EDA,
Photoplethysmography (PPG), Electrocardiogram (ECG), and
skin temperature.

This work examines the feasibility of using EDA data col-
lected from wrist-worn wearable devices to detect human stress.
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EDA can be captured through a sensor that measures skin
conductance changes. Since skin conductance can reflect the
human body’s emotions and physiological responses, EDA is
often used as a physiological indicator to measure emotional
changes. Some commercially available smartwatches and wear-
able devices (e.g., Fitbit sense, Empatica E4) already have
integrated EDA sensors to deliver emerging applications, such as
emotion monitoring to prevent excessive tension and anxiety [2].
However, in contrast to the medical-grade EDA sensors that
need to be at a specific position stationary, wearable devices,
especially smartwatches, are always worn on a human’s wrist
with uncertain motion. Such dynamic movement by humans
creates an elusive challenge to detect human stress with EDA
sensors from wearable devices.

To verify the feasibility of EDA data for the above purposes,
we explore four public datasets that provide EDA signals col-
lected from wearable devices. Next, we applied five machine
learning methods to compare their performances on classifying
stress and non-stress status. We present the classification results
of training with all features and extracted features. We further
examine any differences between males and females regarding
the relationship between stress and EDA, and possible reasons
are analyzed. Finally, we discuss a multimodal approach for
wrist-worn wearable devices and stress detection.

The main contributions of this paper are summarized below:
� Stress detection is feasible through EDA signals collected

from wrist-worn wearable devices. In all the datasets, EDA
provides an accuracy above 70% for stress classification.

� The proposed system needs to be executable on smart-
phones and smartwatches so that simple machine learning
methods are examined. Among the discussed methods,
SVM achieved the highest accuracy of 92.9% in one of
the datasets.

� Compared to other modalities, including PPG and ECG,
and different combinations, EDA provides the highest
accuracy in stress classification.

� When gender information is available, EDA stress classi-
fication accuracy is higher in females, and for the datasets
that we used.

The rest of this paper is organized as follows: Section II
illustrates a literature review on the works related to this study.
Section III introduces the system overview of this work and
related concepts. Section IV presents the methods we adopted
for the experiment. Section V analyzes the performances of
the methods and the observations from the results. Finally,
Section VI summarizes this work.

II. RELATED WORKS

EDA signals can be used as an indicator of emotional change.
EDA data are used to monitor, analyze and evaluate people’s
emotional and stress responses in many scenarios. In [3], they
experimented on whether EDA is a helpful indicator of emo-
tional reactions when working individually, cooperating, and
competing with others. The experimental results revealed that,
in collaborative tasks, participants produced more distinguished
EDA signals than in competitive tasks. In addition, when males
and females were engaged in different tasks, skin conductance

level (SCL) and non-skin conductance responses (NS-SCRs)
showed different patterns. In [4], they discovered a significant
relationship between EDA signals and the self-reported arousal
scores of participants who read emotional content loudly. In [5],
they confirmed that EDA could reflect social discomfort by ask-
ing twenty-eight participants to take a radial line bisection task
individually or with a stranger. The outcomes showed that the
EDA fluctuations and performances of the participants who had
physical discomfort and those who did not were distinctive. The
feasibility of adopting EDA to identify people’s stress arousal
when they are underwater has been studied in [6].

Many works exploit the use of EDA in different scenarios
targeting different groups of users. For example, EDA was used
to estimate how workers perceived potential risks when perform-
ing construction work [7]. In [8], EDA was applied to recognize
patients’ anxiety about surgery. In [9], they used ECG and EDA
data to check the driver’s stress reactions when driving in a
simulator with several car settings. In [10], again with drivers,
they used Fisher projection and linear discriminant analysis to
detect drivers’ stress levels based on EDA under different driving
conditions, and the methods had a recognition rate of 81.82%.
In [11], they summarized that adolescents with major depressive
disorder (MDD) had significantly low EDA while continuous
recording, indicating that the sympathetic part of the autonomic
nervous system of adolescents with MDD is dysregulated.

Since the global spreading of the COVID-19 pandemic,
several aspects of people’s lives have undergone tremendous
changes. The psychological stress of medical workers during
the COVID-19 pandemic is discussed in [12], [13], and they
were calling for an active intervention strategy to help med-
ical workers relieve stress. A summary of the physiological
metrics which can be utilized to monitor the physical health
and mental well-being of COVID-19 positive individuals and
frontline workers is included in [14], and they are calling for
adopting wearable devices with physiological sensors to assist in
alleviating the negative mental impacts brought by the pandemic.
In [15], they adopted a virtual reality platform and physiological
signals (EDA, ECG, PPG, and respiration impedance) to evalu-
ate the feasibility of digital analysis and interventions to monitor
and reduce frontline healthcare providers’ moral distress. Not
only medical workers, people working in other industries and
students who are not having normal campus life are also affected
by COVID-19. In [16], EDA helped evaluate the stress of people
working remotely due to COVID-19. In [17], they developed an
artificial electronic nose system and used EDA signals to detect
the academic stress of engineering students at a university in
Colombia.

The above works target users in specific groups undergoing
specific activities. Our work focuses on general users of all ages
undergoing a regular daily routine. We examine EDA signals
collected from wrist-worn wearable devices since these devices
can be worn in all scenarios to detect human stress without
intruding on daily activities.

III. SYSTEM OVERVIEW

The proposed framework is illustrated in Fig. 1. A wrist-worn
device, such as a smartwatch, collects the EDA signals from
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Fig. 1. The framework of the proposed stress detection system. There
are three main components: i) the wearable device that collects the
signal, ii) the edge devices that performs the basic signal processing
and provides initial feedback, and iii) the cloud where the data is stored,
while advanced machine learning algorithms that can help with further
processing.

a subject. The signal is forwarded wirelessly to a computing
device, such as a nearby smartphone or a computer. Then, it
undergoes several signal processing steps, and the final extracted
features are used for classification. Machine learning methods
that can be executed in a smartphone or a device with limited
computational power are used for the classification and the final
binary decision of the stress status. An immediate response can
go back to the wearable device. The data can be forwarded from
the edge devices to the cloud if further processing is needed.
When the results are available, the cloud can forward them back
to the smartphone or the computer.

A. EDA Signal and Characteristics

EDA is the property of the human body that causes continuous
variation in the electrical characteristics of the skin. An EDA
sensor can measure the fluctuations in skin conductivity that
are caused by sweat secretion. An EDA signal has two primary
components: tonic and phasic levels. Tonic level and phasic level
have opposite characteristics. The tonic level is a relatively stable
feature in EDA, which fluctuates smoothly and slowly according
to individual skin moisture level and autonomous adjustment
ability. The skin conductance level (SCL) denotes the measure-
ment of tonic level, and it is the baseline of EDA. Compared to
the tonic level, the phasic level has a solid response to stimuli and
is a fast-response component in EDA [18]. Skin conductance
response (SCR) denotes the measurement of the phasic level.
After the human body is affected by stimuli, sweat is secreted
to cause changes in skin conductance, and SCR fluctuations are
generated. The changes of SCR in the phasic level are more
dramatic and rapid than SCL in the tonic level. The fluctuations
of SCR can be observed in the form of bursts or peaks. There
are event-related skin conductance responses (ER-SCRs) and
non-specific skin conductance responses (NS-SCRs). Usually,
one to five seconds after the stimulation, ER-SCRs will occur.
On the contrary, NS-SCRs happen unconsciously or without
identifiable stimuli. It is difficult to measure the SCL directly
since uncontrollable NS-SCRs will exist in the EDA raw signal,
even if no intended stimuli are provided to the subjects. Filters
decompose and calculate the SCL and SCR components when
processing raw EDA signals. The SCR’s latency and amplitudes

Fig. 2. The two components and four features of an EDA signal.

in response to stimuli are the main focus of researchers, for
the signals contain information for emotional arousal to the
stimuli, especially the ER-SCR, which is significantly related
to a stimulus and can indicate how much the participants are
engaged in the activities. Four main features, shown in Fig. 2,
can be extracted and utilized in the ER-SCRs.

1) Latency. The duration from stimulus onset to the onset of
the phasic burst.

2) Peak amplitude. The amplitude difference between onset
and peak.

3) Rise time. The duration from onset to peak.
4) Recovery time. The duration from peak to 100% recovery.

B. Wrist-Worn Wearable Devices With EDA Sensor

Wearable devices use software and hardware components to
achieve powerful functions through data and cloud interaction.
In particular, these devices combine technologies such as mul-
timedia, sensors, and wireless communication with daily wear
to realize hardware terminals with functions such as user inter-
action, entertainment, and physiological monitoring. Medical
treatment is one of the main directions of wearable devices’
development.

Smartwatches are popular wearable devices that act as mini
smartphones with computational and data transmission capabili-
ties. As their popularity increases, the amount of sensor data that
can collect and transmit also increases. These data can be enough
to perform machine learning methods for classification and
prediction tasks. The wrist-worn wearable devices that currently
have EDA sensors and are available on the market are shown in
Table I.

C. Publicly Available EDA Datasets

There are publicly available datasets that contain physiologi-
cal signals collected from different experiments. In these experi-
ments, signals are obtained from different skin parts according to
the devices and the research objectives. For instance, the signals

Authorized licensed use limited to: University of Guelph. Downloaded on May 05,2023 at 09:26:04 UTC from IEEE Xplore.  Restrictions apply. 



2158 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 27, NO. 5, MAY 2023

TABLE I
WRIST-WORN WEARABLE DEVICES WITH EDA SENSOR AVAILABLE ON THE

MARKET

TABLE II
AVAILABLE DATASETS WITH WRIST-BASED SIGNALS

in PPG-DaLiA [19] and CLAS [20] datasets were acquired from
the wrist, and the EDA signals in ITMDER [21] were recorded
from fingertips or palm.

In this study, we used four publicly available datasets to
develop the proposed stress detection system, including the
CLAS [20], UTD [22], VerBIO [23], and WESAD [24]. The
physiological signals in the four datasets are used to train and
test the classification models. An overview of the datasets is
available in Table II. The following are the details of the datasets.

1) CLAS: The CLAS dataset is designed to study intelli-
gent human-computer interaction (HCI). This dataset includes
a group of automated human psychological and physiological
evaluations, such as automatically detecting emotions and stress
conditions. CLAS includes EDA, ECG, PPG, and accelerome-
ter signals when 62 participants addressed different problems.
However, three subjects’ EDA data are incomplete so that 59
subjects’ EDA data are used in this study. The participants were
asked to work on interactive and perception tasks in this study. In
the interactive task, the participants should answer mathematical

and logical questions quickly to estimate the participants’ cog-
nitive load and concentration level. The authors selected images
and video clips to prompt the participants’ emotional arousal in
the perception task. The participants answered self-assessment
questions after each task, and the self-assessments are consid-
ered ground truth labels. Shimmer3 GSR+ Unit was used to
collect the EDA signals in CLAS with 256 Hz. The EDA signals
are collected from the fingers, though the device is placed on the
wrist.

2) UTD: UTD was built to identify responses to various types
of stress: cognitive stress, emotional stress, physical stress, and
relaxation in this research. Twenty university students attended
this research and joined the seven-stage activities. The phys-
iological signals in this dataset were recorded by wrist-worn
devices with EDA, temperature, acceleration, HR, and SpO2
sensors.

3) VERBIO: The goal of building the VerBIO dataset was to
learn whether stress could influence physiological signals during
public speaking. Fifty-five speakers gave 344 public speeches,
and physiological signals were collected during the speeches.
However, only eighteen subjects had EDA data from Empatica
E4 during both PRE and POST speech sections, and the EDA
data from these eighteen subjects were used for this study. In
different conferences, the speakers needed to give speeches to
either real or virtual audiences. The speakers delivered their
speeches to virtual audiences with virtual reality equipment in
virtual mode. The authors used Empatica E4 to record the EDA
data with a frequency of 4 Hz and labelled the data with the
speakers’ self-report. The self-reports were taken before and
after each session.

4) WESAD: WESAD was built to study the feasibility of rec-
ognizing emotional states with physiological signals. It includes
EDA, ECG, EMG, respiration, body temperature, and triaxial
acceleration data. Fifteen participants were recruited for this
study and asked to watch videos, speak publicly, solve mental
arithmetic problems, and meditate during the experiments. Same
as VerBIO, Empatica E4 obtained the EDA data in WESAD
with a frequency of 4 Hz. This research extended the authors’
previous study about stress and emotion detection by introducing
three emotional states: neutral, stress, and entertainment. The
participants were asked to complete self-report questionnaires
after each activity.

In the proposed system, there are two main reasons for using
these four datasets. First, the EDA data in all four datasets were
recorded by different devices. The wristband Empatica E4 was
used for collecting the data in VerBIO and WESAD, while the
Affectiva Q Curve was used for UTD. Both Empatica E4 and
Affectiva Q Curve have electrodes built into the wristband to
detect the EDA signals on the wrist [25]. In contrast, CLAS
used Shimmer3, a wrist-worn device that collects the EDA signal
from the fingertips. The different signal resources can provide
evidence for comparing the data’s reliability and quality. Second,
the experiments in the four datasets have similar activities. For
example, subjects in CLAS, UTD, and WESAD were asked
to watch videos; math problem solving was one of CLAS,
UTD, and WESAD; public speaking was required to perform
in VerBIO and WESAD. The objectives of building these four
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Fig. 3. In one section, (a) the original raw data is processed in four
steps, including (b) data segmentation, (c) components separation, (d)
feature extraction, and (e) data splitting.

datasets were for emotion/stress detection. In this way, there can
be more possibilities to cross-compare the data.

Furthermore, except for the CLAS, the other three datasets
have detailed demographic descriptions, including the age and
gender of the subjects, enabling further research on potential
correlation. For instance, correlations between stress levels and
demographic features such as age and ethnicity could be exam-
ined.

IV. METHODOLOGY

A stress detection system should map the inputs, which are
physiological signals, to an output representing the stress level
or status. We address this problem by formulating it as a binary
classification task. Let E = [e1, e2, . . . , et, . . . , en] be the input
EDA data, where et denotes the EDA measurement in Siemens
at discrete time t, the stress detection problem can be defined as
follows:

s = C(Ew, θ) (1)

where s = {0, 1} is the stress state, with s = 1 means stress and
s = 0 means non-stress. Ew ∈ E is a subset of EDA signals
defined according to the segmentation window w < n. C is the
classifier and θ is the corresponding coefficient. A supervised
machine learning algorithm can learn the classifier and its cor-
responding coefficients.

A. Data Preprocessing

Four main steps are performed during data pre-processing as
shown in Fig. 3.

1) Data Segmentation: Usually, EDA data is collected dur-
ing different activities of the participants’ everyday life so that
the collecting period could last from minutes to hours, even days.
However, the long duration of EDA data could be more conve-
nient for analysis due to the high computational cost and sample
inconsistency. As a result, EDA data should be segmented to a
certain length so that the format of samples can be consistent and
the computational cost can be reduced. This study segmented all
data and labels by a 30-second non-overlapping sliding window
for next-step processing. In UTD and WESAD, the data came

TABLE III
SEGMENTATION OVERVIEW FOR EACH DATASET

from more than one activity and had four ground truth labels.
For this study’s binary classification objective (stress and non-
stress), we merged the labels to stress and non-stress categories
for each dataset according to the stress status indicated on the
labels. We also excluded the data obtained from the physical
activity in the UTD to improve the similarity of the four datasets
and perform a fair comparison of the results. The excluded part
of UTD is the data labelled “PhysicalStress” in the dataset,
obtained when the participants were standing or walking/jogging
on a treadmill. After applying the sliding window, 1840 samples
were from CLAS, 1138 samples were from UTD, 889 samples
were from WESAD, and 606 samples were from VerBIO. The
segmentation results of the four datasets are shown in Table III.
Only VerBIO is a relatively balanced dataset. The other three
are imbalanced datasets.

2) Components Separation: Since raw EDA data contains
redundant information, further data preprocessing is still neces-
sary. At the same time, motion artifacts will exist since the EDA
sensors move slightly on the skin, caused by body movements
and skin moisture. Hence, extracting SCR and SCL components
and applying artifact removal methods to the data are essential
for later analysis. The cvxEDA model [26], based on Maximum
a Posteriori (MAP), sparsity, and convex optimization, is used to
decompose the SCR and SCL components. Since the cvxEDA
algorithm relies on the probabilities of the parameters in the
model, preprocessing, such as bandpass filtering, and postpro-
cessing the signal, is not mandatory.

3) Feature Extraction: As training with all features in the sig-
nals would increase the computational cost, statistical features
and additional SCR features were computed and extracted to
form a feature vector used to train the data. Seven features are
chosen to establish the feature vector ([24], [27]). The feature
vector can be expressed as:

FeatureV ector = [meanEDA,minEDA,

maxEDA, stdEDA,

meanSCRonsets,meanSCRamp,

meanSCRrecovery] (2)

where the meanEDA,minEDA,&maxEDA, stdEDA are
based on the actual EDA value in each signal window [24].
Meanwhile, the data with all features, on which no feature
extraction is performed, is used to train the models as well as for
comparing the classification results with the extracted feature
vector.
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TABLE IV
NUMBER OF SUBJECTS FOR TRAINING, VALIDATION, AND TESTING

4) Data Splitting: After the preprocessing, the data are split
into training and testing sets based on subjects since more inter-
ference factors can be eliminated from the relationships between
each individual’s emotional status and EDA, so that subject-
independent analyses are more advantageous than subject-
dependent methods. We took 10% of the subjects as testing
set (rounded up), and the rest are for training. The leave-one-
subject-out method is used to validate the training. Hence,
one subject is left for validation in every training round. This
method saves more training time than leaving more than one
subject out, as more subject combinations will be applied if
independent subject impact needs to be investigated. In addition,
the whole training and testing processes were completed based
on cross-validation. We repeated the training and testing ten
times with a random selection of the training, validation, and
testing sets. All the results are the average of the ten tests. The
data splitting results are shown in Table IV.

B. Classification Using Learning Systems

Five machine learning methods are used to perform the clas-
sification task. We will evaluate the results of the classification
models.

1) K-Nearest Neighbor (KNN): KNN classifies by measuring
the distance between different feature values. Specifically, given
a training dataset, the task is to find the K instances closest to
the input instance in the training dataset. The input instance will
be classified according to most of the K instances belonging to
which specific class. In this study, we applied a cross-validated
grid-search method to determine the optimal K value, which is 3.
The method can score the model with different parameters, and
the parameter that offers the best performance will be considered
the final one.

2) Support Vector Machine (SVM): SVM is a two-class clas-
sification model. Its principal is to find a hyperplane that satisfies
the maximum interval between classes in the feature space. The
learning strategy of SVM can transform into the solution of a
convex quadratic programming problem. In addition, the kernel
trick can be applied to extend SVM to a non-linear classifier.
The commonly used kernel functions of SVM are the Gaussian
kernel and the Sigmoid kernel. In this study, the Gaussian
kernel was applied when using the SVM model to address the
classification problem, since it is more suitable for data with
complicated features by projecting the non-linear problem to
another dimension, which can measure the similarity between
the original features and the projected features. In this way,
samples of the same kind can be better gathered together and
then linearly separable.

3) Naive Bayes: Bayesian classification is a general term for
classification algorithms based on Bayes’ theorem. Therefore,
they are collectively referred to as Bayesian classification. The
Naive Bayes classification is the simplest and most common
classification method in Bayesian classification. Naive Bayes is
different from most other classification algorithms among all
machine learning classification algorithms. Most classification
algorithms, such as KNN and SVM, are discriminative methods.
To directly learn the relationship between feature output Y and
feature X, it adopts either a decision function Y = f(X) or
a conditional distribution P (Y |X). However, Naive Bayes is
a generation method, which means directly finding the joint
distributionP (X,Y ) of feature output Y and feature X, and then
calculating the results based on P (Y |X) = P (X,Y )/P (X).
In this study, Naive Bayes can provide a perspective from
the assumption of independence determined by the conditional
probability distribution for the classification of the EDA data.

4) Logistic Regression: Logistic Regression is a linear clas-
sification algorithm investigating a sample’s probability of be-
longing to a particular category. Logistic Regression calculates
the best decision boundary to distinguish the categories the
most. Logistic Regression can be described as a discriminative
model, which means the model can directly learn the decision
function Y = f(x) or the data’s conditional probability distri-
bution P (Y |X). KNN, SVM, and Random Forest belong to
discriminative models as well. In this study, Logistic Regression
is applied to address the binary classification problem, as the
method does not require the variables to be continuous and linear.

5) Random Forest: Random Forest is to build a forest ran-
domly. There are many decision trees in the forest, and each
tree is trained independently. When there is a new sample, each
decision tree in the forest decides which category the sample
belongs. Then, the decision trees vote to determine the final
classification result based on which category is more selected.
The Random Forest outputs the average of all decision tree
outputs in the regression problem. A Random Forest can be used
for both classification and regression. It is also a dimensionality
reduction method that deals with missing values and outliers.
Random Forest is chosen to tackle the classification problem
here because this method can handle high-dimensional data and
does not need to make feature selections, so that it has strong
adaptability to data sets that meet the characteristics of the data
in this study.

C. Evaluation Metrics

The accuracy, recall, precision, and F1-score, all of which
are standard statistical evaluation methods, are used to analyze
the classification performances. Accuracy can be used when
the class distribution is similar, while F1-score is better for
imbalanced classes. The metrics can be described as:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Recall =
TP

TP + FN
(4)
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Fig. 4. Box plots of the algorithm comparison on the four datasets. In each box plot, the top and bottom whiskers represent the range of the
training accuracy. The box represents the distribution of the training accuracy via the quartiles, and the horizontal bar on the box represents the
median. The blue and red boxes represent the result distributions of training with all features and extracted features, respectively.

Precision =
TP

TP + FP
(5)

F1− score = 2 ∗ precision ∗ recall
precision+ recall

(6)

TP = True positive, TN = True negative,

FP = False positive, FN = False negative.

V. RESULTS AND DISCUSSION

We evaluated the performance of the proposed system for
stress detection accuracy. Then, we examined the extracted
features’ effects on the accuracy and the performance of the
different machine learning. We further investigate any impact
of gender on stress detection accuracy. Finally, we explore a
multimodal approach for stress detection, including two other
signals, PPG and ECG, both available in wrist-worn wearable
devices.

A. Evaluation of Extracted Features

We performed the binary (stress and non-stress) classification
task with the data with all features and the feature vector with
extracted features, respectively. As shown in Fig. 4, no consis-
tency can be found in all four datasets regarding the differences
between training with all features or extracted features. No
pattern for which features will be more suitable for training each
dataset is found. KNN had better performances when training
with all features than extracted features on CLAS and WESAD,
while it shows the contrary results on UTD and VerBIO. Logistic

Regression only worked well with all features on UTD, and
Random Forest only had better performance with all features on
CLAS. However, it should be mentioned that SVM and Naive
Bayes show a pattern that had better results when training with
one set of features over the other one. SVM prefers all features,
while Naive Bayes is the opposite.

The results also showed that the Naive Bayes model has the
lowest theoretical error rate compared with other classification
methods. However, this is only sometimes the case since Naive
Bayes assumes that the features are independent when given
output categories. This assumption is often invalid in practical
applications. When the correlation of features is significant, the
classification effect is less than when the correlation is small. In
the EDA data, the extracted features are relatively independent of
boosting the Naive Bayes’ performance. The essence of the SVM
learning strategy is to maximize the interval between categories,
thereby turning the classification problem into a problem of
solving convex quadratic programming. At the same time, the
method of SVM to solve nonlinear problems is to transform
them into linear classification problems in another feature space
through nonlinear transformation. These principles lead to the
decision boundary needing improvement, determined by a few
features or support vectors. Though the other three models
do not show consistency about which features are preferable,
there is still a tendency that extracted features have an overall
advantage for training the models as high dimensions will cause
the over-fitting problem.

Following these insights, it should be clear that it is unreliable
to determine whether training with all or extracted features is
safe for different datasets. Consequently, comparing training
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TABLE V
EVALUATION OF THE CLASSIFIERS ON STRESS DETECTION WHEN ALL FEATURES AND EXTRACTED FEATURES ARE USED

with all features and different combinations of extracted features
is necessary.

B. Evaluation of ML Classification

The performances of each machine learning model are shown
in Table V. According to the results, the accuracy of Random
Forest is 73.1% and 86.5% for UTD and WESAD, respectively,
while SVM can reach a classification accuracy of 92.9% for
VerBIO. For CLAS, SVM has better performance than the other
four methods. KNN, Naive Bayes, and Logistic Regression
cannot offer satisfactory results for any datasets. Although KNN
supports non-linear solutions, the co-linearity and outliers in the
data are expected to be processed before training. Naive Bayes
expects all features to be independent, and Logistic Regression
provides linear solutions and assumes that input features have no
co-linearity. On the other hand, SVM and Random Forest can
efficiently support non-linear data and cope with co-linearity.
For this study, the EDA samples in the datasets have close corre-
lations since the SCR features (peak amplitude, onsets, recovery,
etc.) are physiological responses, and the various physical and
emotional changes of human beings are influenced and interact
with each other. Consequently, the performances of SVM and
Random Forest outweigh the other methods.

Additionally, for VerBIO, F1-score and accuracy are close,
whether training with all features or extracted features. However,
this is different for CLAS, UTD, and WESAD. The possible
reason for this is that the distribution of stress and non-stress

data in VerBIO is balanced, while the data distribution of CLAS,
UTD, and WESAD is not balanced, as presented in Table III.
Especially in CLAS, the sample distribution is highly biased,
resulting in the F1-scores being much higher than the accuracy
of every method. In the case of CLAS, the F1-score is more
informative than accuracy.

Another interesting insight is that, overall, CLAS has the
lowest accuracy of 68.5%, while with any of the methods, the
accuracy in CLAS is always among the lowest. It is important
to mention that the EDA signals in CLAS are collected from the
fingers. This might indicate that extra noises, probably motion
artifacts, are added to the signal, or information essential to
EDA needs to be better captured from the finger when compared
with wrist-based EDA signal, since wrists would be steadier for
sensors to collect data than fingers.

A comparison between other research works that also perform
binary classification (stress and non-stress) solely with EDA
signals from the same datasets used in this study, is shown in
Table VI. For CLAS and WESAD, our methods and results are
promising compared to other studies. There is no comparison
with VerBIO and UTD, since the research on these datasets
focuses on different topics or uses other evaluation metrics.

C. Evaluation of the Impact of Gender

We further investigate whether other factors, such as gender,
would influence the classification results. We trained the models
separately with male and female subjects in UTD, VerBIO, and
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TABLE VI
A COMPARISON BETWEEN SIMILAR WORKS BASED ON THE SAME DATASETS

TABLE VII
STRESS ACCURACY WHEN SUBJECT GENDER IS USED

TABLE VIII
DETECTION ACCURACY FOR DIFFERENT MODALITIES OF CLAS

WESAD, and we excluded CLAS since it does not provide
gender information. In UTD, 14 out of 20 subjects are males,
and the other 6 subjects are females. In VerBIO, the numbers of
both male and female subjects equal 9. In WESAD, 12 out of 15
subjects are males, and 3 subjects are females. Gender-specific
models are trained and tested on the data from each gender
only.

As shown in Table VII , the overall training results with female
subjects are higher than male subjects on all three datasets. For
simplicity, we included only the highest accuracy results for
each method. For UTD, the best results are with RF, VerBIO
with NB, and WESAD with LR. Males and females usually
have different mental and physical responses to stress [31], and
gender-based models can better capture the other responses. Due
to the differences between the brain activities and hormonal
changes of males and females, they can have different reactions
to the same stress stimuli [32]. When males and females react
differently to stress, females tend to generate greater tonic and
phasic EDA signals [33]. This affects the EDA signals of females
more than males so that the samples from females can reflect

TABLE IX
DETECTION ACCURACY FOR DIFFERENT MODALITIES OF VERBIO

the stress status better. Finally, since the ground truth labels
for all the datasets came from self-report, this might also be an
insight that females could express their emotional changes more
accurately in such surveys.

D. Evaluation of the Effect of Multimodal Fusion

We further trained the classification models with multiple
modalities available in a wrist-worn wearable device and eval-
uated different physiological signals’ potential contribution to
stress detection. We focus on ECG and PPG to detect peo-
ple’s emotional changes as well as EDA since these sensors
are available in most smartwatches and the data are available
in three of the four datasets. ECG can record the timing and
different electrical discharges associated with heartbeats. PPG
is a non-invasive detection method that detects blood volume
changes in living tissue by photoelectric. When people encounter
a stimulus, both heartbeats and vasoconstriction could affect
ECG and PPG. As a result, adopting ECG and PPG signals can
be informative in performing stress detection.

Multimodal signals are usually fused at three levels: sensor-
level fusion, feature-level fusion, and decision-level fusion [34].
In this work, the three modalities from different sensors are
concatenated to form a new feature vector before being fed
into the classifiers. The signal fusion was realized at the feature
level. Extracted features of ECG and PPG are used to establish
the new feature vector. For ECG signals, principal component
analysis (PCA) extracted the most relevant features from the
heart rate (HR) and heart rate variability (HRV) time series of
the ECG signals. HR and HRV are calculated from the Inter Beat
Intervals (IBI), which are acquired based on the R-peaks of the
ECG signals. For PPG, the maximum heart rate after stimulus
onset (PPG_Rate_Max), the minimum heart rate after stimulus
onset (PPG_Rate_Min), the mean heart rate after stimulus onset
(PPG_Rate_Mean), and the standard deviation of the heart rate
after stimulus onset (PPG_Rate_SD) are the features used in this
study.

Since UTD does not contain PPG and ECG signals, only
CLAS, VerBIO, and WESAD are examined. Tables VIII, IX,
and X, show the detection accuracy based on different modali-
ties as well as different combinations among them, for CLAS,
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TABLE X
DETECTION ACCURACY FOR DIFFERENT MODALITIES OF WESAD

VerBIO, and WESAD dataset, respectively. EDA outperforms
ECG and PPG accuracy, as well as signal combinations for
stress detection. It should be mentioned that only in Table X, the
highest detection accuracy of Naive Bayes was offered by the
PPG and ECG fusion, which is non-relevant with EDA. All the
other best performance of each machine learning model is either
based on a single EDA signal or multimodal, including EDA.
The overall optimal result of 92.9% is still from the SVM model
based on EDA from the VerBIO dataset. This can be an indicator
that EDA can directly reflect people’s emotional changes. More-
over, the fluctuations of ECG and PPG may not be as sensitive
to minor emotional changes as SCR. As a result, EDA should
be the primary candidate when performing emotion-related de-
tection. Additionally, for nonstationary physiological signals,
the frequency-domain features may offer better discrimination
ability of the physiological responses than the time-domain
features since the spectral information in the frequency domain
can represent oscillation information. When the classification
efficiency of adopting time-domain features in PPG and ECG
is unsatisfactory, extracting and analyzing frequency-domain
features and performing time-frequency analysis should be con-
sidered to evaluate the signals’ significance in specific tasks [35],
[36].

VI. CONCLUSION

This work evaluates the classification performances of five
machine learning models on four EDA datasets. We trained the
models with all features and extracted EDA and SCR features
separately. The results showed that Random Forest offered the
best binary classification performances on UTD and WESAD,
the accuracy of which is 73.1% and 86.5%, and SVM reached
an accuracy of 92.9% for VerBIO. Additionally, this study used
ECG, PPG, and their fused multimodal with EDA to evaluate the
influence of different modalities for stress detection. The results
show that EDA outweighs the other modalities. An interesting
finding from this study is that there is a significantly better
relation between EDA and stress of female subjects than male
subjects. The proposed framework and the experimental results
show the feasibility of using wrist-worn wearable devices with
EDA sensors for stress detection and classification.
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