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Abstract: Many applications, such as smart buildings, crowd flow, action recognition, and assisted living, rely on occupancy infor-
mation. Although the use of smart cameras and computer vision can assist with these tasks and provide accurate occupancy
information, it can be cost prohibitive, invasive, and difficult to scale or generalize to different environments. An alternative solu-
tion should bring similar accuracy while minimizing the listed problems. This work demonstrates that a scalable Wireless Sensor
Network with CO2-based estimation is a viable alternative. To support many applications, a solution must be transferable and
must handle not knowing the physical system model; instead, it must learn to model CO2 dynamics. This work presents a viable
prototype and uses the captured data to train machine learning-based occupancy estimation systems. Models are trained under
varying conditions to assess the consequences of design decisions on performance. Four different learning models were com-
pared: Gradient Boosting (GB), k-Nearest Neighbours (KNN), Linear Discriminant Analysis (LDA), and Random Forests (RF). With
sufficient labelled data, the KNN model produced peak results with a RMSE value of 1.021.

1 Introduction

As the trend in technology continues to make computational power
and integration among devices more accessible, there is an increase
in demand for intelligent, connected systems. Consumers seek sys-
tems that can anticipate their needs and act accordingly to make their
lives easier. In order for any smart system to meet this challenge,
it needs to have enough information about what specific action is
required of it and about the state of the environment in which it must
act [1]. This critical context must be observed and measured in some
way to be integrated into the system for consideration.

Specific applications for these smart systems are already being
addressed, including systems for smart homes and smart offices,
crowd behaviour analysis, and human action recognition. Common
to each of these applications is that these systems require context
about where users are within the observable space. While some
occupancy-capable systems do perform well for some of these appli-
cations, it is a challenge to produce a system that can generalize
to work for a multitude of settings. The infrastructure available for
a large office building seeking smart office control is quite differ-
ent from that available in a smart home. Smart camera systems may
be well-suited for such an office setting, but may be impractical for
large crowds and may not be welcome within a user’s home. To sup-
port a wider range of problems, occupancy context should include an
estimation of the number of persons present. In addition to generaliz-
ing across applications, a suitable solution should therefore provide
the capability for anonymous and non-invasive sensing.

Wireless Sensor Networks (WSNs) present a viable solution to
this problem. By selecting sensors with environmental awareness,
it is possible to create sensing nodes that can estimate occupancy
while preserving the anonymity of occupants. By networking these
sensing nodes, the occupancy estimation system can generalize to
different applications and domains of varying size. To address the
challenge of domain-specific environmental variation, WSNs may
be accompanied by machine learning models. While quite capable,
the design space for these learned models is large and not easily
bound by the traditional design constraints of a WSN. In order to
design an effective overall system, the impact of design decisions
for learning-based systems must be understood.

In this work, a WSN prototype is presented, which uses CO2 mea-
surements to facilitate occupancy estimation at its nodes. Deployed
in a conference room setting, this prototype is used to train four

learned estimation models. The consequences of some design deci-
sions for these models are observed and discussed. The layout of
this work is as follows: Section 2 contains an overview of sensing
modalities and learning models used in related occupancy estimation
works. The system implementation is provided in Section 3 which
includes details on the proposed prototype, as well as the conditions
of its deployment. Section 4 pertains to the machine learning models,
and expands upon the design parameters of interest, and the scope
of experiments. The results of these experiments are presented and
discussed in Section 5 and are followed by concluding remarks in
Section 6.

2 Related Work

For applications that focus on the actions and behaviours of a few
occupants, occupancy can be obtained through tracking each user’s
location. Wearables, such as a user’s smart-phone or other commu-
nication sensor beacons, can be used to this end [2, 3]. Recently,
[4] showed that it is possible to obtain location accuracies of five
metres by using machine learning models based on received signal
strength from statically placed beacons throughout a target space.
WSN systems based around the inclusion of a wearable component
can provide advantages in terms of specific user location accuracy.
However, the per-person hardware requirements may limit the scale
of the installation, and may not abide by the desire to provide an
anonymous, non-invasive solution for occupancy tracking.

Occupancy and location information have also previously been
obtained through sequences of activations of unique sensors with
known locations. In [5], a heterogeneous sensing network is used to
identify the activities of smart home residents. To identify the activ-
ities of interest, some of the sensors considered include: motion,
light, door, contact, and temperature. Many of the target activities,
such as sleeping, cooking, and personal hygiene, can be uniquely
associated with a single room of a smart home and thus provide
room occupancy information. This type of network has been used
for applications including activity recognition for assisted living [6],
and in producing energy saving recommendations [7]. While capable
of producing occupancy information as a byproduct, this information
is only available if an occupant is participating in one of the target
activities. Any space not associated with a task, or any task that can-
not detect multiple occupants, restricts the generalization of this kind
of deployment.
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Fig. 1: Prototype for the experiments. Left: Raspberry Pi and Arduino Processing Boards. Centre: DHT22 Sensor. Right: K30 CO2 Sensor.

In contrast to the user- and activity-centric occupancy methods,
other systems provide occupancy information from context associ-
ated with fixed landmarks, such as a room or entrance. Making use
of sensors like door contact, passive infra-red (PIR), and motion,
these systems are effective for detecting persons in a target space
by observing the sensor activations over the network of deployed
devices [8]. These deployments preserve privacy, are usually low
cost, and are well-suited for WSN deployments of varying scales.
However, the output of these sensors is limited to binary occupancy
state, as these modalities do not generalize well for measurement
of the number of persons, unless paired with additional sensors.
For the binary detection task, accuracies have been reported on the
order of 99% [9], indicating that applications that can accommo-
date having only detection information can greatly benefit from these
approaches.

Among the candidate sensors to be paired with occupancy detec-
tion sensors are environmental sensors, which obtain occupancy
information through changes in environmental readings in a local
proximity. Environmental assessment WSNs, such as those for
indoor air quality applications [10, 11] and smart climate control
systems [7, 8, 12, 13], make use of sensors that can observe volatile
organic compounds, temperature, and humidity. By not focusing on
specific users, the environmental methods satisfy anonymity and the
indirect nature avoids requiring user attention and interaction.

A common metric exploited is the change in CO2 production rel-
ative to the number of persons present. This relation is dependent
on the deployment space, and as such, requires either knowledge
of the target space to model the relation explicitly [12, 14, 15], or
the ability to learn the relation from observation [9, 14, 16]. The
required prior knowledge of the former model restricts the gen-
eralization of a solution and would hinder any redeployment for
a WSN; thus, a learned solution is preferable. Occupancy estima-
tion systems using learned CO2-to-occupancy models have been
previously demonstrated [9, 16–19]. These solutions make use of
techniques including Artificial Neural Networks (ANN), Classi-
fication and Regression Trees (CART), Gradient Boosting (GB),
Linear Discriminant Analysis (LDA), Random Forests (RF), and
their variants.

An important consideration for learned models, when compared
to those designed by prior knowledge, is that the physical domain

parameters are exchanged for design parameters associated with the
machine learning system. Parameters, which impact the final per-
formance of the system, include sensor and model selection, data
representation and pre-processing, hyper-parameters associated with
the model, and the parameters adjusted by learning. The resulting
design space is large and the parameters are not as interpretable as
the physical domain parameters. For the occupancy detection prob-
lem, effects on performance for some choices in this space have
been previously investigated [9]. However, the models and decisions
for estimating number of persons differ from the occupancy detec-
tion domain, and must be investigated as well. When deploying a
design, it is also important to decide how much sensor data to use
in each estimation. This time window selection was studied in [17]
and [19] for their respective ANN-based models. Given the diverse
behaviours of learning architectures, understanding how the signifi-
cance of the windowing parameter is affected by the choice of model
could further inform design decisions. The consequences of such
design decisions will be considered in this work.

3 System Implementation

In this section, we provide a description of the hardware compo-
nents that were used to build the prototype, followed by the node
deployment and data collection process.

3.1 Hardware components

The proposed platform consists of a number of hardware compo-
nents for each node. Components were selected to facilitate the
sensing and distributed processing requirements of the system. The
prototype, shown in Fig. 1, has the following two main units:

• Sensing Unit: To achieve the desired environmental observation,
two sensors are utilized: the K30 CO2 sensor [20] and the DHT22
temperature and humidity sensor [21].

The K30 sensor, seen on the right of Fig. 1, measures the local
concentration of CO2. This sensor outputs a continuous voltage
proportional to the parts-per-million (ppm) concentration of CO2.
Received at a maximum rate of measurement of 2 s, these reports
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Fig. 2: Prototype system wiring. The DHT22 is connected for a
digital read at 3.3 V with a 2 kΩ pull-up resistor. The K30 is config-
ured for an analog measurement within 5 V with a 1 kΩ pull-down
resistor.

are in the range of 0 ppm to 5000 ppm [20], which encompasses the
expected range for an office setting, which is less than 1000 ppm
[22].

The second sensor, the DHT22, as seen in the centre of Fig. 1,
provides readings of temperature and humidity within the ranges
of −40 ◦C to 80 ◦C and 0-100% humidity [21]. Measurements are
available at a sensing period of 2 s. These operational conditions are
more than sufficient for the indoor setting where rapid environmen-
tal changes are rare due to HVAC regulation.

• Processing Unit: For each sensing node, it is necessary to have
interfacing capabilities with the appropriate sensors, the capability to
both store and communicate readings to a centralized location, and
the capacity to serve as a filtering point for data. For these reasons,
we included an Arduino UNO [23] and a Raspberry Pi 3B [24] at
each node.

Both of the selected sensors are well supported on Arduino,
but the Arduino alone is insufficient for storage and communica-
tion requirements. As such, the Arduino code used in the proto-
type focuses on collecting and formatting the sensor data. This is
achieved by polling each sensor in turn, converting from analog
voltage to ppm concentration, and communicating complete read-
ings over serial to the Raspberry Pi. The Arduino is programmed
to then await the next reading interval. The Raspberry Pi board sat-
isfies the remaining processing requirements by enabling network
connectivity and on-device data backups for the sensor nodes.

The selected sensors are wired to the Arduino for both power and
communication. The K30 sensor runs from the available 5 V source,
drawing 40 mA on average during operation [20], and is read using
an analog I/O pin. The DHT22 sensor, attached to the 3.3 V source,
uses 2.5 mA during a data request [21]. This request is communi-
cated through a digital I/O pin. The Arduino UNO board receives
power from a USB connection to the Raspberry Pi, which also per-
mits serial communication between the two devices. As the main
processing unit, the Raspberry Pi is powered through a wall adapter,
and for this experiment, is provided network connectivity through
WiFi. Each node communicates its data to a shared data server. The
prototype wiring is illustrated in Fig. 2.

3.2 Deployment and Data Collection

Two of the prototype sensing nodes were placed in a conference
room of dimensions 6 m × 5 m × 3 m (W × D × H) to observe
regular room usage. The test environment is shown in Fig. 3. The
room has one external wall, and two doors that were closed during
testing. The first sensor was positioned in the middle of the central

Fig. 3: Environment for the experiments. Prototypes positioned on
the centre table and window sill.
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Fig. 4: Example CO2 readings from January 12, 2018 after median
filtering. First arrival and last departures noticeable starting at 9:30
and 15:00.

Table 1 Dataset Distribution by number of occupants.

Occupancy (persons) 0 1 2 3 4 Total

Count (minutes) 940 456 349 228 267 2240
Percentage 42.0 20.3 15.6 10.2 11.9 100.0

conference table and the second sensor was placed on a window sill
at a similar height. Each prototype took environmental readings at a
rate of 0.3 Hz in order to encompass the rate of measurement of the
two sensors and the required time for communication.

The data received from the sensing nodes is reduced to an effec-
tive rate of once per minute by taking the median of any readings
occurring in the same minute. All data was streamed to a database for
inspection and labelling. An example of the daily variation in CO2
concentration is shown in Fig. 4. This is a base-case scenario where
the room was empty for long time, and then an occupant entered
the room. It can be seen that the room was resting at an overnight
steady state of 430 ppm until the first occupants arrived at 9:30.
After the occupants entered the room, the CO2 concentration contin-
ued to increase until reaching 530 ppm. After the room was vacated
at 15:00, the readings can be seen to decay back to the initial resting
state.

It is clear that when an occupant enters the room after an overnight
resting period, the sensing node detects it, as expected. However, the
challenge is to detect variation of the number of occupants through-
out the day. For training the estimation models, tests were conducted
and labelled for occupancy levels up to four persons. All tests were
manually labelled with start and end times, as well as corresponding
occupancy level. All tests started from zero occupants at steady state,
in order to observe model responses to transitions in state. A sum-
mary of the data collected and the distribution of occupancy levels is
shown in Table 1.
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Table 2 Candidate Learning Models.

Model Description

GB Additive model of decision trees. Each added tree aims
to reduce the residual error of the existing model.

KNN Instance-based learning. Outputs an interpolation
of the labels of the k most similar samples.

LDA Assumes Gaussian distributions in the data. Uses
Bayes Theorem to identify linear separation.

RF Ensemble of decision trees. Each tree is trained on
subsets of the inputs and predictions are averaged.

4 Evaluation Models

With any learned system, it is important to consider the problem
objectives in order to appropriately select a model for the desired
output. Occupancy estimation may be considered as either a classi-
fication problem with integer occupancy classes or as a continuous
value regression problem. Since a classification model may not pre-
serve the significance of the distance between occupancy states,
the regression formulation will be the focus in this work. Ordinal
regression, which treats the outputs as discrete, but maintains their
respective ordering, is also a suitable approach. However, it requires
significant adaptation of the baseline methods, and is therefore
reserved for future work.

For a smart sensor platform, it is desirable for candidate learning
models to abide by the constraints of a distributed sensor network,
such as limited computational resources. Linear models, variants of
k-Nearest Neighbours, and decision trees are among the candidate
learning models regularly considered due to their ease of deployment
and low computational complexity [9, 25, 26].

Considering the constraints of our distributed platform and pre-
vious assessments in the occupancy detection problem, we selected
the following models for evaluation:

1. Gradient Boosting (GB);

2. k-Nearest Neighbours (KNN);

3. Linear Discriminant Analysis (LDA); and

4. Random Forest (RF).

Basic descriptions of these models can be found in Table 2. Each
architecture will be evaluated by four performance metrics:

i. Accuracy;

ii. Root-Mean-Square Error (RMSE);

iii. Normalized Root-Mean-Square Error (NRMSE); and

iv. Coefficient of Variance (CV)

These metrics evaluate the success of model outputs yi, in predicting
true labels ti, for a dataset of M examples.

As defined below, accuracy is the percent of examples success-
fully predicted within rounding and RMSE is the mean distance
between the prediction and true label, hence:

Given, r(x) =

{
1, x < 0.5,

0, otherwise
(1)

Accuracy =
1

M

M∑
i=1

r(|ti − yi|) (2)

RMSE =

√∑M
i=1(ti − yi)2

M
(3)

Accuracy and RMSE are standard metrics across problem
domains for learning systems. However, in order to compare exper-
iments of differing occupancy ranges and physical scales, perfor-
mance indices should be normalized. For this reason, NRMSE and
CV results will also be presented as defined below:

NRMSE =
RMSE

(max (t)−min (t))
(4)

CV =
RMSE

mean(t)
(5)

4.1 Attributes of Study

The performance of a learned model is dependent on both its own
design, as well as its training data. The attributes investigated in this
work are from both categories of design.

The specific attributes under study are identified below, along with
their considered values:

• Series Time Window (Tw) - Minutes of past sensor data to con-
sider in each sample. Tw was tested in intervals of 2 minutes, up to
30 minutes, as well as at 1 minute for smallest window comparison.

• Patience (p) - Minutes to delay output in order to wait for future
context. Equivalently, it can be considered to be the time in minutes
into the past to target prediction. Tests included values of p up to the
value of Tw in intervals of 2 minutes.

• Input Feature Combinations - Input is chosen to be a con-
catenated combination of three features: the normalized sensor data
series of length Tw , the mean of each sensor in the time window,
and the time since last occupancy state change. These features are
labelled as Series, Mean, and Phase, respectively. Six combinations
are considered, excluding the case of Phase alone, which would con-
tain no environmental sensor data.

• Neighbours (k) - KNN specific, this determines the number
of neighbouring training data examples to consider from dataset in
making predictions. Considered k ∈ {1, 3, 5, 7, 9}.

• Estimators (n) - Capacity for GB and RF in terms of number of
weak estimators or trees. Considered n ∈ {10, 25, 50, 100, 250}.

The Tw parameter is of interest due to its effect on the size of the
learned models. For real-time deployments, this parameter also dic-
tates the necessary amount of sensor data that must be maintained by
each node and thus is a concern for resource constraints. One of the
anticipated complexities with estimating occupancy from CO2 is that
the concentration changes read by the sensing nodes are not imme-
diate with respect to occupant state changes. Being that the learned
models depend on this sensor data, the resulting predictions will also
be shifted in time from the true transitions. When permitted by an
application, offsetting the data by this duration has been shown to
reduce the final prediction error [17]. By searching over the patience
term p for each Tw , it will possible to observe the consequences opti-
mizing this time shift both independently of the window size as well
as when the two parameters are optimized together.

The different input features have been selected to identify which
attributes of the sensor data are most impactful for occupancy predic-
tion. For each sample of the selected time window length, the Series
feature captures the shape and trend of the sensor data. In contrast,
the Mean feature ignores all trend information and presents only the
magnitude of the sensor values. Since only one minute of data will
be different between samples which neighbour in time, this feature
will be the slowest changing. Since environmental sensing systems
may be paired with detection sensors like PIR, the Phase feature is
included to capture the state change information that this type of
sensor may add.

In total, each model is subject to 816 setting combinations. These
tests are run for each of the model specific parameter settings,
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Table 3 Preferred Settings for each model, best RMSE performance in bold.

Task Model Accuracy RMSE NRMSE CV Tw p Features k n

Estimation

GB 41.2 1.148 0.230 0.885 28 26 All - 100
KNN 47.8 1.021 0.204 0.787 10 4 All 9 -
LDA 37.9 1.307 0.261 1.01 10 4 All - -
RF 42.6 1.181 0.236 0.911 24 22 All - 50

All Features
Series and Mean

Mean Only
Mean and Phase

Series and Phase
Series Only

Feature Combination

1.0

1.2

1.4

1.6

1.8

2.0

RM
SE

Models
GB
KNN
RF
LD

Fig. 5: RMSE over all parameter tests for each input feature combi-
nation. Best candidates seen to include Series and Mean features.

totalling 4,080 combinations for the models other than LDA. The
tests for each combination of settings are each run ten times and
the average performance is taken. Models are trained with 70% of
the available occupancy dataset and tested on the remaining 30%,
randomly split for each of the ten iterations.

5 Results and Discussion

For each model tested, parameter combinations exist that were able
to estimate occupancy using data from the prototype. However, not
every setting was able to learn structure beyond bias in favour of the
imbalanced labels. In order to assess which parameter combinations
were successful, results were grouped together by their attributes to
observe the resulting variation. The settings found to provide the best
performance for each model are shown in Table 3. Overall, within the
parameter ranges tested, the highest observed accuracy was 47.8%
and the lowest RMSE was 1.021 from the optimized KNN model.
The model performing worst under its optimal settings was LDA,
reporting an accuracy of 37.9% and RMSE of 1.307.

The model specific attributes, k and n, effectively shape the avail-
able capacity of the models. This kind of capacity tuning is standard
process for many learning systems and is not problem specific.
Within the ranges considered in this work, it was found that the
GB models would underfit when n = 10, but no other significant
variation in performance was observed for the ranges tested.

Testing over the set of input feature combinations served to iden-
tify what form of data best supported occupancy estimation. The
feature significance was observed to vary by model, indicating that
the availability of preprocessing to generate these features must be
considered when selecting a model. The range of RMSE results for
each model and feature selection can be seen in Fig. 5.

For all four candidate models, it was observed that minimum
RMSE was achieved when both the Series and Mean input features
were used. Given this condition, the presence of the Phase feature
yielded only slight improvement to the minimum RMSE reported by
the KNN models. Based on performance when trained on either of
these preferred features independently, having the mean sensor value
provided better performance than having just the trend information.
The LDA model was most significantly impacted by the absence of
the Mean feature. This is seen by the near 15% worse performance

Fig. 6: Best RMSE results from sweeping (Tw, p) pairs for the GB
model. Final parameters from optimizing parameters independently
(I) and jointly (J) shown with circle and square markers.

in the two rightmost tests of Fig. 5, ‘Series and Phase’ and ‘Series
Only’, which were the only two combinations lacking Mean. For the
KNN model, performance decreased when testing with Mean and
Phase together instead of with the Mean feature alone. While Mean
is the most stationary feature between samples, Phase is constantly
changing. This conflicting pace in the input data may have inhibited
the algorithm in finding sufficiently similar candidate samples.

The GB and RF models present the closest behaviour across all
feature combinations and remain fairly consistent when exposed to
Mean or Series exclusively. Whereas the KNN and LDA models
learn though similarity and linear separability in the training data, the
tree-based models are capable of more complex segmentation. Given
this flexibility in rule-based learning, it makes sense that these mod-
els would be more likely to find suitable solutions for the broader
range of input structures. It is also likely that if a preferable tree was
found by one of the models, that a comparable one would be found
by the other and thus both models would present similar behaviour.

The remaining data attributes, Tw and p impact the scale of time
considered in the data samples and labels. To study the impact of
these parameters, the best RMSE for each model under each pair of
settings is isolated. In general, with optimizing Tw , it was observed
to be mostly convex; however, the point at which the minimum
occurred varied for each model when the p parameter is changed.
This can be seen by the trough in the RMSE results running parallel
to the Tw = p line for the GB model in Fig. 6.

When optimizing the time data parameters independently, it is
easiest to first observe the relation between time window Tw and
RMSE performance with p = 0. After optimizing Tw from this rela-
tion, the model can be fixed at that size and tested at different
patience shifts to identify the best RMSE for that model and when
it can be expected. When optimizing jointly, a more thorough search
is required to test each pair of settings and find the resulting opti-
mum. A condensed representation of these searches for each model
can be seen in Fig. 7. For each model, the initial p = 0 surface is
shown, as well as the performance curve for the value of p resulting
in the global minimum for the model. These curves are joined by the
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Fig. 7: RMSE performance with respect to window size and patience parameters for each model. Final models from optimizing parameters
independently and jointly shown with circle and square markers.

surface of minimum RMSE solutions for each Tw at its optimal p.
The solution from independent parameter selection for each model is
marked with a circle, and the joint selection solution is marked with
a square. The respective parameter pairs can also be read in Table 4
as well as the difference between two optima.

Of the candidate learning models, only the KNN model search
converged to the same Tw and p settings for the the joint and inde-
pendent searches: Tw = 10, p = 4, RMSE = 1.021. The maxi-
mum displacement was observed in the GB solutions, as seen in
Fig. 6, where the independent solution needed an additional 20 min-
utes for each parameter to reach the joint optima. The available
RMSE improvement available between the two solutions was less
than 0.09 for all models and often requires expanding both param-
eters. This improvement in performance remains an option only if
the intended application can relax constraints for both model size
and real-time performance to support these expansions. As the joint
search process is more involved, only in select cases would it be
worth pursuing.

When comparing the parameter solutions found across models,
it is interesting that the RF and GB models require greater context
and patience than the simpler models. Since the solution space for
the tree-based models is larger, these models may require this addi-
tional context in order to eliminate a greater volume of ineffective
solutions.

Within this investigation, none of the attribute permutation tests,
including those with preferred settings in Table 3, exceeded 50%
accuracy. The best RMSE value of 1.021 is also indicating the aver-
age estimation error exceeds one person. While not surpassing any
state-of-the-art results, the acquisition of these values still validates
the occupancy context available through the prototype and how dif-
ferent learning architectures might be optimized for the estimation
task. Fig. 8 shows an example test output from the optimized KNN
model. During the state transition between 20-30 minutes into the

test, it can be seen that while the prediction is converging to the
expected state that this region would be evaluated as inaccurate and
contribute to a higher RMSE. RMSE was suitable in characterizing
the impact of the Tw and p parameters, but a metric for comparing
transient behaviours in prediction models would be valuable to cap-
ture behaviour like this. It may be advantageous to consider attributes
from control systems such as rise time or time to peak for this task.

In this work, four learning models were assessed, and KNN
returned the overall best RMSE and accuracy. As an instance-based
learning model, its performance relies on test cases being similar to
training cases observed. This means that KNN models will likely
not be able to generalize as well as GB or RF models. Applica-
tions and deployments where it is not possible to obtain a breadth
of occupancy state examples may therefore prefer the RF model
instead. Having a low n in its preferred settings, the RF model
would also be attractive for computationally constrained applica-
tions, such as where occupancy information is needed at each sensor
in a network and must be computed on the node itself. These applica-
tion constraints must be considered alongside the attribute selection
trade-offs.

6 Conclusion

We presented a prototype WSN for environmental monitoring in
a smart building. Through localized environment measurement at
each sensing node, the prototype provides the necessary information
to enable occupancy context for a smart system as an anonymous,
non-invasive, and simple solution. This prototype network facilitated
the testing of four different architectures tasked with learning the
relation between CO2 and occupant state. Of the candidate learn-
ing models which included GB, KNN, LD, and RF, the KNN model
returned the best performance under preferred settings with an accu-
racy of 47.8% and RMSE of 1.021. If sufficient labelled data can be
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Table 4 Model time parameter optimizations and differences.

Model Optimization Tw p RMSE

GB
Independent 6 0 1.232

Joint 28 26 1.148
Difference 22 26 0.084

KNN
Independent 10 4 1.021

Joint 10 4 1.021
Difference 0 0 0

LDA
Independent 6 4 1.315

Joint 10 4 1.307
Difference 4 0 0.008

RF
Independent 12 12 1.235

Joint 24 22 1.181
Difference 12 10 0.054
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Fig. 8: Example test output from KNN with preferred set-
tings. Model prediction shows occupancy state transition occurring
between the true label and patience delayed label at 23 minutes.

obtained for a deployment, the KNN model would be an appropriate
selection.

The data collected from a deployment of the prototype was used
for characterizing the consequences of different design decisions
relating to the model and training data. It was found that the per-
formance for all candidate models improved when the training data
included information on both the magnitude and structure of the
sensor data. The GB and RF models were seen to maintain more
consistent performance when either type of information was absent.
At peak performance, these two models also required more histori-
cal data and prediction patience than both the KNN and LD models.
Jointly optimizing the window size and delay parameters yields
slight improvements to the RMSE over independent optimization.
The additional context required for the improved solution, however,
may conflict with real-time performance constraints.

In future work, this deployment will be scaled to a larger envi-
ronment and occupancy range to assess the effect of task com-
plexity on these observations. Consideration of performance metrics
which incorporate transient behaviour may further improve com-
parisons between models and facilitate more appropriate attribute
optimizations.
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