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Abstract—In the Internet of Things (IoT) era, with millions
of connected devices to the internet, indoor location services
regarding room discovery and resource identification/tracking are
among the most popular applications for smart homes and smart
buildings. Bluetooth Low Energy (BLE) beacons are a promising
solution to improve the scalability and accuracy of indoor
localization applications. They are low cost, configurable, small
transmitters designed to attract attention to a specific location.
In this paper, we investigate three popular BLE beacon devices
available on the market and compare them in terms of energy
consumption and proximity accuracy for indoor localization
services. In addition, two state-estimation filters are developed for
the Android mobile platform in order to improve the proximity
accuracy when using smartphone devices. Specifically, a static
Kalman filter and Gaussian filter are implemented.

I. INTRODUCTION

Lifespan and accuracy are critical characteristics of any
Internet of Things (IoT) applications. Current battery tech-
nologies have come a long way, but in order to manage a
large network of various wireless nodes, a low power solution
is required. With the increase in wireless nodes and competing
networks in all environments, the level of contention will
drastically affect accuracy.

Bluetooth Low Energy (BLE) beacons have emerged as a
popular wireless device, predominantly due to their simplicity
and low cost. They are small devices which transmit their
unique identity, as well as any telemetry data collected from
additional sensors that may have been added by the manufac-
turer. They are readily available in today’s market and have
become a popular means of providing indoor localization,
using Received Signal Strength Indicator (RSSI) techniques
[1]. Their scalability and ease of integration with smartphone
devices are additional attributes that ensure homogeneity for
indoor localization applications. BLE beacon deployment con-
tinues to grow and is projected to reach 400 million deployed
devices globally by the year 2020 [2]. However, the transmit-
ted signals are subject to noise and physical interference. As
the number of wireless networks and devices grow, or as the
complexity of the environment increases, the level of accuracy
diminishes and the need for filtering techniques increases.

Research has proven that the addition of post-process filter-
ing techniques improves the precision of RSSI readings from
BLE beacon packets. These filters are generally predictive/
estimation filters, such as the Kalman, Gaussian, or particle
filters [3], [4]. These filters are often implemented on a
server [4]. Further research regarding prediction and accuracy

improvements has expanded into machine learning, with such
models as the K-Nearest Neighbor (KNN) [5].

This paper compares the accuracy and energy consumption
characteristics of three BLE beacon devices through experi-
mentation. Each beacon is chosen for its variations in power
sources and cost. The accuracy of each device is compared
in its raw form and with two separate filtering techniques;
Kalman filter and Gaussian. The implications of the results in
relation to IoT integration is also discussed.

The rest of this paper is organized as follows; In Section II,
an overview of the related works regarding BLE beacon
devices is discussed, followed by Section III that introduces
the experimental procedure and methodology. Section IV
discusses the experimental results and its implications. The
conclusion is in Section V.

II. RELATED WORKS

Smartphones and their wide range of integrated technologies
facilitate a lot of the growth in IoT, supporting multiple mech-
anisms for indoor localization, as discussed in [6]. Multiple
techniques and technologies have been adapted to provide
indoor location information, all of which attempt to overcome
the noise and dynamics of a complex and dynamic indoor
environment. Such indoor localization models may be based
on a visual system, as in [7]. This model is capable of accurate
indoor localization through sophisticated feature recognition
but requires pre-processed data of the environment and in-
creased hardware costs. Other implementations attempt to use
existing Wi-Fi infrastructure to provide indoor localization
services. The work in [8], utilizes a fingerprinting approach
to achieve accurate location, but suffers from more noise in
the environment and high energy consumption.

BLE beacons are cheap, simple, and a very scalable means
of implementing indoor localization services. In recent years,
BLE technology has grown in popularity and much more
research has been developed in using it for indoor localization
and resource identification/tracking [3], [9]. The fundamental
operation of these beacons for localization purposes is based
on RSSI techniques [10], [11], where the RSSI value is
translated into a distance by using a best curve-fit signal prop-
agation model. BLE beacon protocols, such as iBeacon [12]
and Eddystone [13], provide the necessary information and
configuration capabilities for micro-location [1] and integrate
easily with the vast majority of mobile devices on the market.



As the number and variation of devices increases in any
environment, susceptibility to noise and interference becomes
especially important. To overcome the effects of noise and
dynamic changes to the physical environment, many filtering
techniques have been implemented. One of the most common
filter implementations is the Kalman filter as detailed in [3].
This filter may provide a reasonably accurate state estimation.
Other filters such as the particle filter are used. Particle filters
can be highly accurate but at the cost of greater computational
complexity. Hence the need for a client-server based model,
as outlined in [4].

One of BLE’s critical characteristics in Indoor Positioning
Systems (IPS) is its low power consumption. BLE requires
less energy than Wi-Fi [14], while some beacons even operate
on solar power, as discussed in detail in [15]. The works
presented in [16] explore the power consumption of alternate
BLE devices. They introduce some basic IoT applications
that utilize the BLE protocol, giving insight to the energy
requirements of BLE devices.

This paper expands on the previous work in [17], comparing
the performance of the Kalman filter to the performance of the
proposed Gaussian filter for RSSI distance estimation. This
paper also explores the energy consumption of 3 different
BLE beacon devices in the interest of understanding the
varying power characteristics of beacons offered by different
manufacturers.

III. EXPERIMENTAL PROCEDURE AND METHODOLOGY

This section introduces the characteristics of all system
components, which includes the three beacons, the receiving
device, and the measuring tools used in the experiments.
Furthermore, the experimental procedures used to measure
accuracy and energy consumption is explained in detail.

A. Equipment

Three BLE beacons are used in the following experiments:
Estimote [18], Kontakt [19], and Gimbal Series 10 [20].
The three beacons are chosen for their variations in design,
price, power source, and features. The goal is to compare the
performance with respect to the vast variety of BLE beacon
devices that are available on the market by using three very
different yet popular beacon devices.

The Estimote beacon contains many additional sensors,
such as humidity, lux, air pressure, and motion. It runs on 4
CR2477 3V batteries, organized in a series pair to provide
the required 6V input for operation. The Kontakt beacon
is a simpler beacon that runs on 2 CR2477 batteries in a
parallel configuration. The Gimbal Series 10 beacon is the
simplest and cheapest beacon of the three and requires a single
CR2032 battery. All beacon devices are able to implement
either Apple’s iBeacon, or Google’s Eddystone protocol. The
receiving device is a Google Nexus 5 smartphone running
Android OS version 6.0.1. The power measuring device is
a Monsoon power monitor.

B. Filtering techniques

Two filtering techniques were implemented in the experi-
ments in order to achieve better accuracy. Specifically, a static
Kalman filter and Gaussian filter. These filters were chosen
due to their simplicity, aptness, and ease of implementation
in mobile software. The Kalman filter is a linear quadratic
estimator that uses a sequence of measurements over time to
produce estimates that also considers statistical noise, making
is a great suitor for RSSI-based localization techniques. The
Gaussian filter is a great filter for sequential measurements
with inherently small delay, making it computationally man-
ageable for a smartphone-based implementation. Alternative
filtering algorithms, such as the particle filter, would have
been too power consuming and computationally expensive to
implement on a smartphone.

Static Kalman filter (KF-ST). The static Kalman filter is
following the work in [17]. The static Kalman filter works in
two stages; prediction, then update. A Kalman gain modifies
the predicted value and is calculated based on a constant mea-
surement noise parameter, set in the algorithm. This parameter
is chosen based on the environment it is being used in, and
for RSSI measurements, is often chosen to be between 2 and
4 for most environments.

Gaussian filter. The Gaussian filter can be defined by the
following equations and is implemented in a similar fashion
to [3].

First, an array of previously obtained RSSI values is created.
This array is used to calculate two essential parameters; the
mean, (µ), and the standard deviation, (σ). For the purposes
of these experiments, the array size is kept as the latest 10
values (including the current state).

The mean is calculated as;

µ =

∑n
i=1RSSI

n
(1)

To calculate σ, the variance needs to be calculated.

var =

∑n
i=1(RSSI − µ)2

n
(2)

Where n is a set number of previously obtained RSSI values
(including the current state), and µ is the mean of these values.

The σ parameter is calculated as the square root of the
variance.

σ =
√
var (3)

In reference to algorithm 1, notice that the first if statement
determines if σ is greater than 0. It assumed that the standard
deviation always takes the positive root, but if the value is
zero, the alternate standard deviation is set to 1 so that it has
no effect on the rest of the calculation. Next, the algorithm
determines which side of the distribution the value is on so that
it can appropriately add or subtract the determined Gaussian
distribution value.



Algorithm 1 Calculate Gaussian Filtered RSSI
1: if σ > 0 then
2: if newSignal − µ > 0 then
3: RSSI = newSignal−( 1√

2·π·σ ·
−(newSignal−µ)2

2·σ2 )
4: else
5: RSSI = newSignal+( 1√

2·π·σ ·
−(newSignal−µ)2

2·σ2 )

6: else
7: if newSignal − µ > 0 then
8: RSSI = newSignal − ( 1√

2·π ·
−(newSignal−µ)2

2 )
9: else

10: RSSI = newSignal + ( 1√
2·π ·

−(newSignal−µ)2
2 )

C. Room selection

The performance of beacons can be affected by the envi-
ronment. To examine the performance of each beacon and the
filtering techniques, two rooms of different sizes were selected
for the accuracy experiments. Room 1 – a lab room of size 5.65
x 10.30 meters and Room 2 – a meeting room of size 4.5 x 5.0
meters. The first room is a wireless laboratory while the second
was a smaller meeting room, with beacons being the only BLE
transmitting devices in the area during the experiments. These
rooms were chosen for their difference in size, physical layout,
and noise characteristics. The RSSI data is expected to vary
between these environments, thus allowing us to compare and
contrast filter performance and distance estimation accuracy
in different environments.

IV. EXPERIMENTAL RESULTS

We examine the performance of the three beacons in terms
of energy consumption and accuracy.

A. Energy Efficiency

The lifespan of every IoT network is a critical factor in
its performance and development/ maintenance costs. In this
experiment, the average power and current consumption are
measured and compared for all three beacons.

1) Experimental Setup: To compare the energy efficiency
of each beacon, the average power and current consumption
is measured over a period of 4 minutes. To access the beacon
devices, each beacon was taken out of its shell so that the
positive and negative terminals could be accessed.

Each beacon is set to have the same transmit interval and
transmission power, of 3 seconds and -12 dBm respectively.
To measure the average power and current consumption, the
Monsoon power monitor is used. It measures these parameters
at a rate of 5000 samples per second, thus providing a highly
accurate result.

2) Energy Results and Discussion: The average current
and power consumption of the three BLE beacons are shown
in Fig. 1. As it can be seen, under identical conditions,
the Gimbal beacon has the highest current draw and power
consumption. This is then followed by the Estimote, and the
Kontakt beacons.

Fig. 1. Average current and power consumption.

The differences in power consumption are due to the
differences in circuit design and additional sensors integrated
with the various beacons. The Gimbal beacon is, in fact, the
cheapest beacon of the three, and as a result, the engineering
behind power management is reflected in its results. The
Estimote beacon, though much more expensive, has the most
additional sensors as previously outlined, which causes the
increase in power consumption. The Kontakt beacon is the
clear choice of the three with regards to greatest lifespan.
Note that the Kontakt beacon supports 2 CR2477 button cell
batteries in parallel, drastically increasing its lifespan.

B. Accuracy

Each beacon device contains varying hardware components,
specifically transceivers, that will influence its behavior and
accuracy in a given environment. In this experiment each
beacon is tested in the two rooms, the wireless laboratory
(Room 1) and the meeting room (Room 2) and over multiple
set distances, to compare their accuracy in a simple indoor
localization application. The rooms are selected based on their
different environmental characteristics as described in section
III-C.

1) Experimental Setup: Each beacon undergoes three itera-
tions of the experiment; the first takes 12 RSSI measurements
in its raw form, i.e. no additional filters, the second takes
the same 12 measurements under the employment of a static
Kalman filter (KF-ST), and the third makes use of a Gaussian
filter. To measure the RSSI values, the beacon is placed at a
fixed point and the Google Nexus 5 is moved to the 12 set
distances; 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 2.00, 2.25,
2.50, 2.75, and 3.00 meters. Similar to the energy consumption
experiment, each beacon is set to have the same transmission
power of -12 dBm. Also consider that in this particular
experiment, the transmit interval is set to 300ms. The change
in transmission interval is due to the fact that if the beacons
transmit only every 3 seconds, the Kalman and Gaussian filters
have little to no effect on the distance estimation because
it cannot progress at a rate that can accommodate for the
dynamic changes in the noise of the environment.

The receiving device (Google Nexus 5) implements an open
source application Beacon Scanner [21], to read the iBeacon



(a) Estimote. (b) Kontakt. (c) Gimbal.

Fig. 2. Room 1: Distance estimation.

(a) Estimote. (b) Kontakt. (c) Gimbal.

Fig. 3. Room 2: Distance estimation.

TABLE I
ROOM 1: STANDARD DEVIATION IN m.

NoFilter KF-ST Gaussian
Estimote 0.84 0.27 0.40
Kontakt 0.60 0.28 0.41
Gimbal 0.76 0.33 0.68

TABLE II
ROOM 2: STANDARD DEVIATION IN m.

NoFilter KF-ST Gaussian
Estimote 0.84 0.63 0.63
Kontakt 0.74 0.54 0.67
Gimbal 0.71 0.32 0.61

packets, transmitted by the beacons. It utilizes the AltBeacon
library to support the BLE packet decoding. The application
code is altered to append the Kalman and Gaussian filtering
algorithms to the logic and UI.

2) Accuracy Results and Discussion: Figures 2 and 3 depict
the distance measurement results of all 3 beacons in the two
test environments and Tables I and II detail the standard
deviation of each beacon from its expected distance values
for both test environments. The translated distance estimation
is calculated as the best curve fit for the receiving device’s
hardware. Take into consideration that each BLE beacon has
a calibrated RSSI value that is expected to be seen at 1m. This

value is used for distance calculations, and this parameter is
sent with every packet as per the iBeacon protocol [12].

It can be seen from the graphs and tables that the KF-
ST and Gaussian filters result in a significant improvement in
accuracy over the raw data. The signal noise and competing
2.4GHz channels in both testing environments appeared to
have a significant effect on the accuracy. The filtered results
are much closer to the true value in the first environment
as compared to the second, likely due to interference caused
by the closer proximity of the beacons to a wireless router.
Additional causes for the variation in results is likely due to
the difference in environmental layout, where beacon signal
interference may have a greater impact on each other in Room
2 versus Room 1. This may also explain the underestimation
at distances greater than 1.5 meters for the Estimote and
Kontakt beacons respectively. This effect is not seen with
regards to the Gimbal beacon and may be attributed to changes
in signal noise in the environment at the time of testing.
Further analysis into the noise levels of interfering signals
and their effects on beacon performance could expand on
this research. Without any filtering, the beacons achieved a
standard deviation no better than 0.6m from the expected
proximity, as shown in Table I. An improvement of over 50%
was obtained in the case of the Estimote beacon, under the
influence of the Gaussian filter, and over 67% improvement
in accuracy under the influence of the KF-ST. Both filters



are a viable means of improving accuracy, but the KF-ST
shows consistent superiority over the Gaussian. This is because
the Kalman filter is tuned for the particular environment in
which it is used [17], while the Gaussian filter relies only
on the standard deviation, arithmetic mean, and the current
measurement to produce an estimation of the true distance.

Testing of each filter, given the deployment environment,
is needed to make an appropriate decision on which filter to
implement. The difference in environmental layout and noise
may cause one filter to perform better than the other. Even with
noise and contention in the test environment, it is important to
note that the experiment was conducted with direct Line Of
Sight (LOS) and no physical environmental changes. These
factors will have a large effect on the accuracy of real-world
implementations, even with the assistance of the KF-ST or
Gaussian filter.

V. CONCLUSION

This paper explored two critical characteristics, energy con-
sumption and accuracy of BLE beacons. The three beacons in
this experiment are representative of a larger market of beacon
manufacturers. The Estimote, Kontakt, and Gimbal beacons
were subject to two experiments. The first measured average
current and power consumption, and the second measured
RSSI/distance proximity, comparing raw values with those
under the enforcement of a mobile software implemented
Kalman and Gaussian filters.

It was shown that beacon devices can vary drastically in
expected life and that scalable and improved BLE based
positioning systems can be created with a combination of pa-
rameter tuning and mobile software defined filters algorithms.
There are clear trade-offs and trends that are observed when
comparing the cost and features of each beacon. The simpler
devices with lower cost may behave sufficiently in terms of
accuracy, but fall short in terms of energy consumption, and
the beacons with more sensors show obvious increases in
power consumption. If the application must be highly scalable
(i.e. large number of nodes), then beacons such as the Gimbal
series 10 would optimize the budget. For applications that
require additional sensing and longer lifespan, more expensive
options such as the Estimote beacon may be the optimal
choice. Future studies and analysis would be focused on
a more in-depth energy characterization of several popular
beacon devices, as well as an analysis on the effects of noise
and obstacles on distance estimation.

BLE beacons are a popular choice for a growing number of
IoT applications including indoor positioning, resource/asset
tracking and location discovery. With the addition of low
power sensors, BLE beacons have a wide range of capabilities
and applications in IoT. In an effort to improve the conver-
gence of IoT in heterogeneous environments, the research and
experimental results presented in this paper suggests that in
order to select an ideal beacon, an extended characterization
of power and proximity accuracy of available beacons should
be carried out. A simple decision matrix comparing accuracy,

power consumption, and cost may be sufficient in selecting
the ideal beacon given the application requirements.

REFERENCES

[1] P. Spachos, I. Papapanagiotou, and K. N. Plataniotis, “Microlocation
for smart buildings in the era of the internet of things: A survey
of technologies, techniques, and approaches,” IEEE Signal Processing
Magazine, vol. 35, no. 5, pp. 140–152, Sept. 2018.

[2] V. R. Evans. (2016, 26, January) Beacons on track to
hit 400m deployed by 2020 reports unacast. [Online].
Available: http://www.businesswire.com/news/home/20160126005779/
en/Beacons-Track-Hit-400M-Deployed-2020-Reports

[3] K. Zhang, Y. Zhang, and S. Wan, “Research of rssi indoor ranging
algorithm based on gaussian - kalman linear filtering,” in 2016 IEEE
Advanced Information Management, Communicates, Electronic and Au-
tomation Control Conference (IMCEC), Oct. 2016, pp. 1628–1632.

[4] F. Zafari and I. Papapanagiotou, “Enhancing ibeacon based micro-
location with particle filtering,” in 2015 IEEE Global Communications
Conference (GLOBECOM), Dec. 2015, pp. 1–7.

[5] A. Ault, X. Zhong, and E. Coyle, “K-nearest-neighbor analysis of
received signal strength distance estimation across environments,” 01
2005.

[6] F. Al-Turjman, “5g-enabled devices and smart-spaces in social-
iot: An overview,” Future Generation Computer Systems, 2017.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167739X17311962

[7] T. Wu, L. K. Chen, and Y. Hong, “A vision-based indoor positioning
method with high accuracy and efficiency based on self-optimized-
ordered visual vocabulary,” in 2016 IEEE/ION Position, Location and
Navigation Symposium (PLANS), April 2016, pp. 48–56.

[8] K. Kaemarungsi and P. Krishnamurthy, “Properties of indoor received
signal strength for wlan location fingerprinting,” in The First Annual In-
ternational Conference on Mobile and Ubiquitous Systems: Networking
and Services, 2004. MOBIQUITOUS 2004., Aug 2004, pp. 14–23.

[9] F. Zafari, I. Papapanagiotou, and K. Christidis, “Microlocation for
internet-of-things-equipped smart buildings,” IEEE Internet of Things
Journal, vol. 3, no. 1, pp. 96–112, Feb. 2016.

[10] S. Sadowski and P. Spachos, “Rssi-based indoor localization with the
internet of things,” IEEE Access, vol. 6, pp. 30 149–30 161, 2018.

[11] R. Faragher and R. Harle, “Location fingerprinting with bluetooth low
energy beacons,” IEEE Journal on Selected Areas in Communications,
vol. 33, no. 11, pp. 2418–2428, Nov. 2015.

[12] Apple. (2014, June 2) Getting started with ibeacon. [Online]. Available:
https://developer.apple.com/ibeacon/Getting-Started-with-iBeacon.pdf

[13] Google. (2017, July 5) Google eddystone format. [Online]. Available:
https://developers.google.com/beacons/eddystone

[14] G. D. Putra, A. R. Pratama, A. Lazovik, and M. Aiello, “Comparison
of energy consumption in wi-fi and bluetooth communication in a smart
building,” in 2017 IEEE 7th Annual Computing and Communication
Workshop and Conference (CCWC), Jan 2017, pp. 1–6.

[15] P. Spachos and A. Mackey, “Energy efficiency and accuracy of solar
powered ble beacons,” Computer Communications, vol. 119, pp. 94 –
100, 2018. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0140366417309891

[16] R. Tei, H. Yamazawa, and T. Shimizu, “Ble power consumption estima-
tion and its applications to smart manufacturing,” in 2015 54th Annual
Conference of the Society of Instrument and Control Engineers of Japan
(SICE), July 2015, pp. 148–153.

[17] A. MacKey and P. Spachos, “Performance evaluation of beacons for
indoor localization in smart buildings,” in 2017 IEEE Global Confer-
ence on Signal and Information Processing (GlobalSIP), Nov. 2017 -
accepted.

[18] Estimote. [Online]. Available: https://estimote.com/
[19] Kontakt. [Online]. Available: https://kontakt.io/
[20] Gimbal. [Online]. Available: https://gimbal.com/
[21] N. Bridoux. (2017) Beacon scanner. [Online]. Available: https:

//github.com/Bridouille/android-beacon-scanner


