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Abstract

Quality of Experience (QoE) is a measure of the overall level of customer satisfaction with a vendor. In telecom-
munications, consumer satisfaction is of great interest in the adoption of novel multimedia products and services. A
number of factors can greatly influence the customer experience during a video session. Factors such as user percep-
tion, experience, and expectations are expressed by QoE while factors such as application and network performance
are expressed by Quality of Service (QoS) parameters. This paper studies the relationship between QoS and QoE in
a session-based mobile video streaming. Specific QoS Application Performance Metrics (APMs) are examined based
on a QoE assessment database which is built for experimentation and contains 108 subjects. It is shown that these
APMs are highly related to two QoE factors, Technical Quality (TQ) and Acceptability. Furthermore, Viewing Ration
(VR) parameter and the corresponding Kendall correlation between VR and QoE factors proves that VR is a valuable
metric for mapping QoS to QoE. We further generated the compacted decision tree to predict QoE factors through
Rebuffering Ratio (RR), Non-interruption Content Viewing Ratio (VRc), and Non-interruption Viewing Ratio (VRs).
Through extensive experimentation, a general relationship between APMs and QoE factors has been examined and a
primary QoE model is proposed based on this relationship.
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1. Introduction

One of the main goals of telecommunications is to
provide services which satisfy consumers. However,
the dramatic growth in data traffic is stressing network.
Video service has occupied an important place in net-
work services and video traffic has taken a huge amount
of traffic on the Internet. A crucial requirement is to
support video services to meet customer’s expectation
in terms of Quality of Experience (QoE). QoE is the
degree of delight or annoyance of the user of an appli-
cation or service. It results from the fulfillment of his
or her expectations with respect to the utility and/ or en-
joyment of the application or service in the light of the
user’s personality and current state [1].

QoE is a subjective measure of user’s perception.
People are still at the stop of determining the methodol-
ogy of QoE assessment, exploring the connections be-
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tween Quality of Service (QoS) and QoE, and deriv-
ing potential models for QoE estimation. Traditional
QoS has focused on the video itself, while ignored that
video is only a part of the whole service session for an
Over-The-Top (OTT) video streaming. This is reason-
able since OTT video becomes popular only recently. In
order to propose a QoE model for next-generation net-
works, it is necessary to study QoE based on a life cycle
of a video session [2].

In this paper, the relationship between Application
Performance Metrics (APMs) and QoE factors collected
by subjective experiments is studied. APMs are ob-
jective measurable metrics to represent the quality of
a video. Two QoE factors are involved in this paper:
Technical Quality (TQ) and Acceptability. TQ collects
user’s opinions from available options to understand
QoE, while Acceptability is a binary measure to locate
whether user accepts the video quality or not. The im-
pact of failures which happened during a video display
is also discussed. It is investigated whether the addition
of failure requires new performance metrics, and how
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the failures impact user’s assessment on QoE on mobile
video streaming.

The major contributions of this work are listed below:

• An extensive QoE experiment was designed and
conducted. In the experiment, 108 subjects partic-
ipated and successfully finished the experiment.

• A novel session-based QoE model is introduced
for mobile OTT video streaming. The model pro-
poses the use of the entire interaction during the
life-cycle of the video section in order to determine
the QoE.

• Following the introduced model and the Interna-
tional Telecommunication Union (ITU) standards,
two types of failures are introduced: Accessibility
and Retainability, in order to understand the QoE
in the whole session.

• Along with the traditional Mean Opinion Score
(MOS) scale, two new scales are used to examine
whether the opinion scores remain stable after the
introduction of the failures.

• Data correlation and four machine learning clas-
sification: Naive Bayes, Logistic Regression, k-
NN Classification, and Decision Tree, were used to
analyze the complex relationships among selected
APMs and QoE factors and to compare the impact
under various test conditions, the addition of fail-
ures and the change of scales.

• A primary QoE model is proposed which relies on
a quantitative relationship between the OoS perfor-
mance metrics and the QoE factors.

The remainder of the paper is structured as follows:
In Section 2, the related work on QoE and APMs is re-
viewed. In Section 3 the session-based QoE and QoS
are described followed by a description of the experi-
mental design and methodology in Section 4. In Sec-
tion 5 is the evaluation analysis to explain the relation-
ship between APMs and QoE factors, and Section 6
proposed a primary QoE model of MOS based on this
study. This work is concluded in Section 7.

2. Related Work

2.1. QoE Overview

QoE of a service is determined by various factors, or
categories [3, 4, 5, 6]. Defining QoE categories is the
basic problem for analyzing and researching the multi-
faceted, user-oriented quality assessment problem. Two
types of indicators are mentioned in QoE: Key Quality

Indicator (KQI ) and Key Performance Indicator (KPI).
KPIs can be measured and calculated directly. The
values of KPIs are derived from measurable network
performance and non-network performance parameters.
KQIs are used to capture the user’s perception directly.
KPIs are logically aggregated into KQIs, and one KPI
can be a part of multiple KQIs at the same time [7]. Fi-
nally, KQIs are mapped into QoE factors.

Nokia proposed five main categories to characterize
QoE: service availability, usability, integrity, reliabil-
ity, and accessibility [4]. As mentioned in [6], there
are many factors related to QoE, such as accessibility,
server reliability/availability, usability, network qual-
ity, content effectiveness, and so on. QoE dimensions
include technology performance, usability, subjective
evaluation, expectations, and context [3].

This paper focuses on two KQIs: TQ and Acceptabil-
ity. For KPIs, APMs related to failures are introduced.
it provides a detailed description of APMs in a video
session and how to connect APMs to QoE factors.

2.2. Classical QoE Studies

Most QoE research aims to reveal the relationship be-
tween QoS and QoE. A. Khan et. al. have studied the
impact of QoS parameters on QoE and proposed a QoE
adaptation scheme for video applications [8]. R. Imran
et. al. have utilized statistical techniques to evaluate
QoE performance based on QoS parameters [9]. Alres-
hoodi and Woods have summarized recent studies on
QoE/QoS correlation modes [10]. They have summa-
rized three possible approaches for mapping the QoE/
QoS relationship: use QoS to map QoE, use QoE to
map QoS and use some QoS and QoE to estimate other
QoS and QoE. They conclude that the problem is which
approach is efficient enough.

The ITU-T Study Group is active in developing stan-
dards for video QoE evaluation [11, 12, 13, 14]. QUA-
LINET developed systematic methodologies for QoE
on multimedia applications [15, 16]. Joskowicz et al.
summarized parametric models for video quality esti-
mation in recent years [17], and proposed their own
parametric model for perceptual video quality [18].
Dalal et al. implemented a video QoE assessment
framework for real-time video streaming [19]. Based
on real-time models, a packet scheduling algorithm was
utilized to minimize a defined cost function [20, 21].

2.3. Tendencies in QoE Assessment

Recently, more and more researchers discussed QoE
measurement by proposing new approaches. Oyman
et al. considered how to develop performance metrics
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to accurately evaluate QoE for adaptive streaming ser-
vices [22]. They found that rebuffering is the single
most influential impairment relating to QoE and they
used rebuffering percentage to estimate the user satis-
faction.

Machine learning is being introduced into the QoE/
QoE model study. Balachandran et. al. proposed a data-
driven machine learning approach to tackle the complex
relationship between the quality metrics and QoE mea-
surement [23]. Mushtaq et. al. have discussed dif-
ferent machine learning approaches to assess the cor-
relations between QoS and QoE [24]. Six classifiers
are tested based on their data to investigate the correla-
tion between QoS and QoE in video streaming service.
Chen et. al have discussed QoS parameters impacting
users’ satisfaction and proposed a video rate adaptation
scheme to improve viewer QoE [25, 26].

Another tendency in QoE assessment is the deploy-
ment of Acceptability. T. Hoßfeld et. al have pointed
that QoE studies should not be limited to the study of
MOS. They have classified a set of objective and sub-
jective QoE metrics and indicated that acceptance is a
key QoE metric [27]. Menkovskis et. al. have imple-
mented a QoE model to predict whether the quality of
network service is acceptable (‘Yes’) or unacceptable
(‘No’) [28]. Their model is based on a decision tree,
and they declared that the accuracy is over 90%. Other
work on acceptability QoE model is proposed by Song
et. al. [29] They have generated a logistic regression
model to map QoS parameters to acceptability.

Meanwhile, there has been considerable recent re-
search in QoE evaluation, especially in developing QoE
models for OTT video applications [30, 31, 32, 33]. An
early indication of the need to assess QoE for an en-
tire session was discussed in [34]. Human factors that
influence QoE, such as context, human memory, and at-
tention effects, were investigated in [31, 34]. Moorthy
et al. implemented studies including subjective testing,
subjective opinion evaluation and objective algorithm
performance analysis [33]. Their QoE evaluation em-
phasized the impact of rate adaptation.

Mok et. al. [32] and Pessemier et. al. [30] have stud-
ied the impacts of impairments on QoE directly instead
of correlating network performance to QoE. Dorian et.
al. have proposed the impact of video quality on QoE
factor, however, they did not discuss the possible fail-
ures although they mention the concept of a video ses-
sion life, which included "stopped/exit" [31].

Comparing to above research, this paper focuses on
finding the impact of impairment and failures, which
has a close explanation about the QoS side compared
to previous work.

3. Session-based QoE and QoS

In this section, the proposed session-based QoE and
QoS model is described, followed by the main QoE fac-
tors that are examined and the QoS performance metrics
which affect it.

3.1. Session QoE with impairments and failures

Traditionally, QoE assessment focused on Integrity
impairments [14]. Integrity indicates the degree to
which a session unfolds without excessive impairments.
However, this approach does not include whether a
video can successfully start and/ or end normally and
without any problems.

With the popularity of OTT video streaming, research
on QoE proposed that user perception of a video ser-
vice should be studied during the life-cycle of a video
session [31, 2]. Experimental results have shown that
the customer experience in a service is significantly im-
pacted by the entirety of interactions during the session
of a customer with a service. Consequently, as a type
of service, the QoE of video streaming should be deter-
mined by the entire interaction during the life-cycle of
the video session.

When the user requests a video, it follows the steps
below:

i. wait for the video to start,

ii. watch the video along with some possible impair-
ments, and

iii. quit the video service normally or abnormally due
to unexpected problems.

Integrity impairments cover only the second step of
the previous process. In this work, two more compo-
nents, Accessibility and Retainability failures are pro-
posed, to understand QoE in the whole session. Con-
cerning the QoE measurement of an entire session,
a session-based QoE evaluation which includes three
components has been proposed in our previous work
[35, 36, 37, 38, 39, 40].

Accessibility and Retainability are called failures
since either represents an abnormal termination of video
service. Accessibility failures will cover the first step of
the video session process and Retainability failures will
cover the third step of the video session process.

The ITU standard sets six primary components to the
quality of telecommunication services [41, 42]. These
are: Support, Operability, Accessibility, Retainability,
Integrity, and Security. A service session typically con-
tains Accessibility, Retainability, and Integrity. Hence,
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only these three components in a video session are dis-
cussed.

Accessibility. It refers to the successful start of the
session. When the subject attempts to initiate the
session, the session may or may not start success-
fully. If the session fails to start, an Accessibility
failure has occurred. Service accessibility may be
related to availability, security (authentication), ac-
cess, coverage etc.

Retainability. It is the capability to continue the ses-
sion until its completion, or until it is interrupted
by the subject. If the session is terminated perma-
nently due to a failure, this is a Retainability fail-
ure. In general, Retainability characterizes connec-
tion losses.

Integrity. It indicates the degree to which a session un-
folds without excessive impairments. Even when
a session does not experience any of the previous
two failures, there are a number of service-specific
impairments that may impact the QoE of the ser-
vice. For instance, throughput, delay, delay varia-
tion (or jitter) can impact the perceived quality of
the service.

The definitions of these three components follow
the International Telecommunication Union (ITU) stan-
dard [41]. Our investigation of the session-based QoE is
based on these definitions and focuses on mobile video
service. This is because mobile video service occupies a
huge data traffic and encounters more Integrity, Acces-
sibility, Retainability issues comparing to non-mobile
service.

3.2. QoE Factors

In this work, two main QoE factors are examined to
represent user’s perception:

Technical Quality (TQ): All technical features that
the user can perceive during the whole video ses-
sion. These features include but are not limited to
the video blockiness, video freezing, video blurri-
ness, and audio sync issues. This definition is pro-
posed in a study focusing on quantifying the influ-
ence of rebuffering on QoE of mobile video [30],
and the terminology of TQ is widely used for QoE
subjective assessment [30, 15]. In this work, the
technical features are the impairments and failures
that we designed and discuss in Section 4.3.

For rating the TQ, three different rating scales were
employed:

Scale A: Excellent - Good - Fair - Poor - Bad.
Scale A strictly follows the ITU standards
and it is a 5-point rating scale.

Scale B: Excellent - Good - Fair - Poor - Bad -
Terrible. Scale B extends the rating scale of
Scale A on the negative side by adding one
more choice at the bottom (Terrible). This
is proposed in order to decide whether the
user’s evaluation of impairments and failures
tends to go to the negative side when more
failures are shown.

Scale C: Excellent - Good - Fair - Poor - Bad
-Terrible - Worst Possible. Scale C also ex-
tends on the basis of Scale A with two more
negative choices.

The design for Scale B and Scale C is to decide
whether the opinion scores are stable when even
worse opinion scores are provided with the appear-
ance of failures, which is the first time introduced
in the QoE assessment.

Acceptability: Acceptability refers to the subject’s de-
cision to either accept or reject a product or a ser-
vice by utilizing 2-point likert scale (answering Yes
or No). In QoE research, acceptability is treated as
a whole offer – including price, cost, and system –
and relies on directly querying subjects regarding
the acceptability of the quality level experienced.
In [43], the authors have defined acceptability in
the context of mobile video QoE as “a binary mea-
sure to locate the threshold of minimum acceptable
quality that fulfills subject quality expectations and
needs for a certain application or system”.

At the same time, consumer acceptance is of great
interest in the adoption of novel multimedia prod-
ucts and services. The ITU definition of QoE is
based on the notion of subject acceptability of a
service [12], while most QoE systems follow MOS
to measure a subject’s acceptability. Study on ac-
ceptability can help explore the possibility and ef-
fectiveness of new QoE models based on binary
QoE assessment.

For acceptability, the traditional 2-point likert scale
was employed.

3.3. QoS Performance Metrics

QoE and QoS are complementary but distinct mea-
sures of service quality. QoS of OTT video streaming
is focused on network performance and its measure-
ment involves network-centric metrics for service as-
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sessment. Objective QoS metrics are important in as-
sessing network performance. However, network per-
formance cannot directly represent the user’s perception
of quality regarding services. Many other factors, such
as psychological aspects, end-to-end service processes,
and context, should be considered in QoE evaluation.

An important component of QoE study is how to eval-
uate the impact of QoS parameters on QoE assessment.
For Integrity impairments, rebuffering event is consid-
ered. Our work proposed a session-based QoE evalu-
ation, hence it needs to examine the impact of Retain-
ability/ Accessibility failures on video QoE as well. As
a result, the QoS parameters used in our work are asso-
ciated with both Integrity impairment and Retainability/
Accessibility failures, which were seldom discussed be-
fore.

The following QoS parameters are examined:

• Initial buffering duration: The duration of an initial
buffering.

• Rebuffering Number (RN): The number of re-
buffering events happened during a video session.

• Rebuffering time: The time point at which a re-
buffering event happened.

• Rebuffering duration ( td): The duration of a re-
buffering event.

• Video length ( tv ): The original length of a video.
This is the total length of a pristine video, without
any Integrity impairment, Retainability failure or
Accessibility failure.

• The total display time(tL): The total display time
of a video and rebuffering duration.

• Content viewing time: The content viewing time of
a video from a specific user. Content viewing time
is a performance metric introduced due to the ad-
dition of failure types since Integrity impairment
assumes that user can watch the whole video de-
spite encountering impairments.

A graphical description of the different timing is
shown in Fig. 1. tni represents the content display time
after the last impairment. In our experiment, all re-
buffering have the same duration.This is not a realistic
scenario in daily applications. However, deploying vari-
able lengths of rebuffering duration means that we need
to consider the impact of rebuffering time lengths on
QoE evaluation. As we described above, we are more
interested in exploring the QoE evaluation with the ad-
dition of Retainability and Accessibility failures. Con-
sidering the time and money consumption of recruiting

Figure 1: An example of impairment/ failure timing.

participants, we simplify some properties on Integrity
impairments. More details are discussed in paper [44].

Note that tv , tL − RN · td when Retainability failure
happens. This is because when a Retainability failure
happened, the user cannot see any more content of this
video. Content viewing time is decided by a video ses-
sion. If there is a Retainability failure, the content view-
ing time is smaller than tv. Meanwhile, the value of tv is
a fixed value when the video is selected.

Based on these objective metrics, four performance
metrics to quantify QoS for OTT video streaming are
proposed. All metrics are Application Performance
Metrics (APMs), hence, they are performance metrics
on the application level during the video playback.

i. Rebuffering Ratio (RR): The ratio of total rebuffer-
ing time versus the total display time of a video (re-
buffering time + content viewing time). It can be
defined as:

RR =
td · RN

tL
(1)

ii. Non-interruption Content Viewing Ratio (VRc):
The content display time after the last impairment
versus the total content viewing time. It is equal to:

VRc =
tni

tL − RN · td
(2)

iii. Non-interruption Viewing Ratio (VRs): The con-
tent display time after the last impairment versus
the total content viewing time. It can be defined as:

VRs =
tni

tv
(3)

iv. Content Viewing Ratio (VR): The content viewing
time versus the total length of a video. It reflects
the level of video completion. It is equal to:

VR =
tL − RN · td

tv
(4)

4. Experiment Design and Methodology

This section describes the subjective assessment
methodology that was followed. A laboratory-
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controllable subjective experiment was designed, with
specific impairments and failures [44].

4.1. Experimental Setup

The experiment took place in a controlled environ-
ment at the University of Toronto. The conditions of
participation were to have normal or corrected to nor-
mal vision and to not have participated in a video qual-
ity assessment experiment in the six months prior to the
date of the experiment. All subjects were aged over 18
years.

108 subjects participated and finished the experiment.
The majority of participants are engineering students
from the University of Toronto. They are familiar with
OTT video services, such as YouTube and Netflix. The
age of above 90% participants are between 18 and 30.
The ratio of males to females is 2 : 1 (some participants
chose to not expose their gender).

All the subjects used the same computer with the
same configuration. Each subject evaluated 31 video
sessions in total, which lasted around 90 minutes. The
average length of each video is 96.7 seconds. The
videos are displayed in random order to control possi-
ble effects. The resolution of video clips is 864 × 482
and a frame-rate of 30 frames-per-second (fps), which
is a comparative number to the resolution of mobile dis-
plays in the real world. The complete videos were be-
tween 73 and 123 seconds in length with an average of
94.1 seconds. The video sessions consisted of 23 short
movie trailers (teaser-trailers) and 8 short movies.

The Absolute Category Rating (ACR) method, which
was recommended from ITU [14, 45], was employed
for the experiments. Every participant answered four
questions related to the video quality immediately after
the video. The questions are listed in Table 1. Q1 and
Q2 are related to TQ and Acceptability. The other two
questions are related to CQ (Content Quality) and OX
(Overall eXperience).

4.2. Experimental procedure

The experiment procedure for each participant has the
following phases:

i. Registration phase. The participant first signed the
consent form and answered some general profile
questions. During this phase demographics, video
viewing habits, and video quality preferences were
collected.

ii. Training phase. After the registration phase, each
participant took a short training on QoE evalu-
ation along with the definition of the different

No. Rating Criterion/ Question Rating
Scale

1 Is the technical quality of this video
acceptable? Yes/No

2 Your evaluation of the technical
quality in the video is:

Scale A/
Scale B/
Scale C

3 The content of the video is: Scale A

4
Your overall viewing experience
(Content + Technical quality) during
the video play back is:

Scale A/
Scale B/
Scale C

Table 1: Questionnaire for each video.

terms/ words in the questionnaire. The participant
watched 5 videos and answered the questionnaire
used for video evaluation. These 5 videos included
either Integrity impairments and Retainability fail-
ures or Accessibility failure in a predetermined or-
der. The responses to the questionnaire were not
used in any analysis. The only purpose of this phase
is to familiarize the participant with the procedure.

iii. Evaluation phase. After the training, the experi-
ment started. The participant watched the videos
based on the group she/ he belongs. Between the
videos, there is a short break to answer the ques-
tions. During the video playback, there were two
breaks after every 10 video clips.

4.3. Impairment and failure types

Each video has one type of impairment/ failure. The
type of impairment/ failure is the test condition. Each
participant encountered the same amount of impair-
ments/ failures, in a randomized order.

Three categories of impairment/ failure issues were
designed for the experiment, which follows the life-
cycle of a video session:

Test sequences containing Integrity impairments
during playback (I). In our experiments, only re-
buffering events were used to present Integrity im-
pairments. One video sequence may have more
than one rebuffering event during playback.

Test sequences containing Retainability failures
during playback (R). In our experiments, a Re-
tainability failure may happen with/without In-
tegrity impairments. As long as the Retainability
failure happened, the video session ended.
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Test sequences containing Accessibility Failures
during playback (AF). An Accessibility failure is
a failure which occurs before any content of the
video sequence is displayed.

In this experiment, we have videos without any im-
pairment/ failure (I0), videos encountered Accessibility
Failure (AF), three types of Integrity impairments (I1-
I3), and three types of Retainability failures (R0-R2).
The description of each impairment/ failures is listed as
follows [44]:

• I0: There is no impairments and failure. The video
is pristine.

• I1: The video has a single temporary interruption
of 10s duration happening at 15s.

• I2: The video has two 10s temporary interruptions
happening at 15s and 30s of the content display
time.

• I3: The video has three 10s temporary interrup-
tions happening at 15s, 30s, and 45s of the content
display time.

• R0: A permanent interruption happening at 70s of
the content display time.

• R1: One 10s temporary interruptions happening at
15s; and a permanent interruption happening at 30s
of the content display time.

• R2: Two 10s temporary interruptions happening at
15s and 30s; and a permanent interruption happen-
ing at 50s of the content display time.

• AF: The video never starts to play. The video
player display "failure-to-play" message immedi-
ately.

Performance metrics of corresponding types are
listed in Table 2. VRc, VRs, and VR are new perfor-
mance metrics proposed due to the addition of failure
types since the definition of Integrity assumes that user
can watch the whole video despite encountering impair-
ments. We can see that VR is always equal to one for
Integrity impairments, and the difference between VRc

and VRs is on the calculation of Retainability failure
types. The reason we propose these new metrics is be-
cause we found that the length of content viewing time
impacts the evaluation of Retainability failures [36]. We
will discuss whether these new performance metrics
should be used to sketch the impact of failures in the
following sections.

Type RN RR VRc VRs VR

I0 0 0 1 1 1
I1 1 td

td+tv
tv−t f 1

tv
tv−t f 1

tv
1

I2 2 2td
2td+tv

tv−t f 2

tv
tv−t f 2

tv
1

I3 3 3td
3td+tv

tv−t f 3

tv
tv−t f 3

tv
1

R0 0 0 1 tR0
tv

tR0
tv

R1 1 td
td+tR1

tR1−t f 1

tR1

tR1−t f 1

tv
tR1
tv

R2 2 2td
2td+tR2

tR2−t f 2

tR2

tR2−t f 2

tv
tR2
tv

A 1 1 0 0 0

∗td: The duration of each rebuffering.
∗tv: The content time of each video.
∗tRi: The content viewing time for Ri, i=0, 1, 2
∗t f i: The time point of the i-th rebuffering happened at
the content time, i=1, 2, 3.

Table 2: Performance metrics for Integrity Impairments and Failures.

4.4. Group formation

We divided the 108 subjects into four groups and
each group finished their experiment with different rat-
ing scales. Table 3 shows the details about the rating
scale assignment and group arrangement.

We can see that G1 followed the ITU standard model.
The rating scale is a 5-point scale (Scale A), and they
only evaluated Integrity impairments during the exper-
iment, as shown in the fourth column of Table 3. G1
is a special group which is used as a comparison. The
participant in G1 evaluated all video clips without the
appearance of any failure.

The participants in G2, G3, and G4 evaluated both
impairments and failures. To further explore the impact
of Retainability and Accessibility failures, we also em-
ployed various rating scales on G2, G3, and G4. The
purpose of various scales is to extend negative choices
for rating since our experiment introduces more nega-
tive scenarios (failure types) than usual.

In the following analysis, we will use the Scenarios
shown on the fifth column of Table 3 to represents each
group. We will use 5 to −1 to represent these ratings,
i.e. Excellent = 5, Good = 4, Fair= 3, Poor= 2, Bad= 1,
Terrible = 0, and Worst Possible = −1.

5. Evaluation Analysis

In this section, we will analyze the relationship be-
tween the performance metric and the QoE factors.
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Group Subjects Scale Type Scenario

G1 36 A I0-I3 A_I
G2 24 A I0-I3, R0-R2, AF A_IF
G3 24 B I0-I3, R0-R2, AF B_IF
G4 24 C I0-I3, R0-R2, AF C_IF

Table 3: Groups arrangement of the participants, along with the Rat-
ing Scales and Impairment/ Failures Types.

5.1. Analysis Overview

In our experimental analysis, we used two meth-
ods: data correlation and machine learning classifier ap-
proaches.

5.1.1. Correlation
Correlation is a statistical measure of association be-

tween two variables. A correlation coefficient is a di-
rect approach to reflect relationships between a pair of
variables. However, the disadvantage is that correlation
cannot reveal the interactions if there are more than two
variables.

Correlation can help us to decide whether a specific
APM is related to QoE factors or not. Kendall cor-
relation was used to measure the relevance between
one APM and one QoE factor. Follow the suggestion
in [31], the Kendall correlation is a rank correlation
which does not have any assumption on the distribution
or the joint distribution of variables; while Pearson cor-
relation assumes a linear correlation between variables.
Considering that VRc, VRs, and VR are related to fail-
ures which have rarely been discussed, it is important to
examine whether they should be used as effective per-
formance metrics for QoE assessment.

5.1.2. Machine Learning Classifier Approaches
We have used various machine learning classifiers

to analyze the complex relationships among selected
APMs and QoE factors and to compare the impact un-
der various test conditions (the addition of failures and
the change of scales). Machine learning classifier is
a black box approach to analyzing the association be-
tween APMs and QoE factors. The advantage is that
it provides a clear output (QoE factors) by the input
(APMs). Although at the same time, it hides details
from data. This is why the accuracy of prediction de-
creases when the requirement of granularity becomes
higher, as stated in [23].

In this work, our goal is to examine the primary as-
sociation between APMs and QoE factors. We first

Figure 2: MOS under four scenarios.

go through four simple and widely-used classifiers dis-
cussed in [10, 23, 24]: Naive Bayes, Logistic Regres-
sion, k-NN Classification, and Decision Tree. Then, we
select the classifier which is most stable accompanying
high accuracy across all cases.

5.2. Impairment/ failure types vs QoE factors

MOS and 95CI (Confidence Interval) of impairment/
failure types under specific scenarios(A_I, A_IF, B_IF,
and C_IF) is shown in Fig. 2.

As it can be seen, the MOS values of these types are
different. This implies that the users’ perception of one
type of impairment/ failure is varied from others, no
matter which scenario is examined. Generally speaking,
the MOS of impairments decreases with the increase of
rebuffering times (I0 > I1 > I2 > I3). Meanwhile,
the MOS values of Retainability failures are lower than
those of impairments.

Figure 2 indicates that there is a connection between
impairment/ failure types and QoE factors. However,
how impairment/ failure types impact QoE factors needs
further examination. Figure 3 shows the correspond-
ing values of RR, VRs, and VR of impairment/ failure
types based on all samples of A_IF. On one hand, it
shows that RR distinguish the level of rebuffering issues
since impairments with same RNs are clustered together
along the RR values. On the other hand, it shows that
VR and VRs represents the characteristics of failures.

For example, R1 has one rebuffering issue and then
encountered a failure, while R2 has two rebuffering
issues and a relatively longer content viewing time.
Hence R1 shows generally smaller RR values while R2
has larger VR values. These impairment/failure types
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Figure 3: 3-D view: APMs of impairment/failure types, A_IF.

Scenario d f F-value p-value

A_I 3 115.27 < 0.0001
A_IF 6 114.25 < 0.0001
B_IF 6 97.22 < 0.0001
C_IF 6 114.95 < 0.0001

Table 4: One-way ANOVA: Quantification of Impairment/ Failure
type.

deployed in our experiment explains the characteristics
of impairments and failures well, which is important for
a subjective experiment.

One-way Analysis of variance (ANOVA) was con-
ducted for each scenario to quantify the main effect of
impairment/ failure types. Table 4 shows that the im-
pact of impairment/ failure types is significant across all
scenarios.

To verify the impact of impairment/ failure types on
acceptability, the acceptability rate of each impairment/
failure type is shown in Fig. 4. This is the rate in which
customers agree that TQ is acceptable.

It is clear that there is a huge drop between impair-
ments and failures, which is not reflected by Fig. 2. It
can be inferred that acceptability reflects users’ percep-
tion from a different aspect and can capture assessment
which is not direct in MOS.

5.3. APMs versus QoE factors

The APMs are compared for the two QoE factors: TQ
and Acceptability.

5.3.1. APMs under TQ levels
Table 5 summarizes the Kendall and Pearson correla-

tion coefficients between APMs and TQ under the four
scenarios (A_I, A_IF, B_IF, and C_IF). As it can be
inferred, the correlation between RN and TQ drops a
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Figure 4: Acceptability rate under four scenarios.

A_I A_IF B_IF C_IF

Kendall Correlation Coefficients
RN -0.4259 -0.2761 -0.2596 -0.2306
RR -0.3872 -0.4166 -0.3833 -0.3912
VRc 0.3872 0.4166 0.3833 0.3912
VRs 0.3872 0.4944 0.4574 0.4762
VR - 0.4581 0.4336 0.4794

Pearson Correlation Coefficients
RN -0.4854 -0.3110 -0.2555 -0.52065
RR -0.4852 -0.4954 -0.4425 -0.4219
VRc 0.4851 0.5086 0.4617 0.4447
VRs 0.4851 0.6382 0.6059 0.6184
VR - 0.5318 0.5460 0.5914

Table 5: Correlation coefficients between APMs and TQ.

lot when failures are introduced. This means RN can-
not reflect the impact caused by rebuffering with the ap-
pearance of failures. On the other side, RR measures
the impact of rebuffering in a stable manner even with
failures.

At the same time, the absolute value of Kendall cor-
relation of RR is the same as the absolute value of that
of VRc under the same scenarios. This indicates that
RR and VRc represent the same property from different
aspects. Note that the Pearson correlations of (RR, TQ)
and that of (VRc, TQ) are slightly different.

The correlation between VR and TQ under A_I is not
available because of VR=1 for all impairment types. For
other cases, the Kendall correlation coefficients between
VRs/VR and TQ are above 0.4. The value 0.4 is close
to the Kendell correlation coefficients between RR and
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(b) A_IF case.

Figure 5: Empirical cdf for RR vs. TQ.

TQ in A_I, i.e. the traditional QoE assessment with In-
tegrity impairments only. It indicates that the associ-
ations between VRs/VR and TQ in the session-based
QoE evaluation is at the same level of associations be-
tween RR and TQ in the traditional QoE assessment.
Note that RR is a common metric used for traditional
QoE assessment. It means that VRs, and VR should be
considered as RR for our further analysis on the session-
based QoE.

The empirical Cumulative Distribution Function
(CDF) of RR based on TQ levels is shown in Fig. 5.
With the decrease of TQ, the shapes of CDFs are differ-
ent in both A_I and A_IF while the general tendencies
in both cases are similar. It seems about 80% of highest
ratings (TQ=5) fall below RR<0.1. At the same time,
80% of ratings of TQ≤ 2 fall below RR<0.25. This
indicates that RR represents the characteristics of TQ
levels regardless of whether failures are included in the
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(b) A_IF case.

Figure 6: Empirical cdf for VRs vs. TQ.

evaluation or not.
The empirical CDF of VRs is shown in Fig. 6. Similar

to Fig. 5, it is clear that under different levels of TQ, the
CDFs of VRs is distinguishing.

The empirical CDF of VR in the A_IF case, since VR
is a constant in the A_I case, is shown in Fig. 7. When
TQ>3, around 90% of VR is equal to 1, i.e., the whole
content of a video has been shown.

5.3.2. APMs vs. Acceptability
Table 6 shows the correlations between APMs and

Acceptability when Acceptability is viewed as a binary
scale (‘Yes=1’, and ‘No=0’).

These coefficients agree with the conclusions from
Table 5. It also indicates that acceptability and TQ are
similar to each other, although TQ and acceptability ex-
plain the user’s perception of different granularities and
consideration.
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Figure 7: Empirical cdf for VR vs. TQ, A_IF.

A_I A_IF B_IF C_IF

RN -0.2782 -0.0775 -0.0629 -0.0880
RR -0.2528 -0.3042 -0.2763 -0.2961
VRc 0.2528 0.3042 0.2763 0.2961
VRs 0.2528 0.4057 0.3728 0.4130
VR - 0.6101 0.5958 0.6072

Table 6: Correlation coefficients between APMs and Acceptability.

The empirical CDFs of RR and VRs under Accept-
ability are shown in Fig. 8 and Fig. 9, respectively. The
cumulative tendency of RR is similar in A_I and A_IF
cases, while the CDF of VRs shows a large difference
when VRs ≤ 0.4 in the two cases. It indicates our previ-
ous judgment: VRs is useful to present the presence of
failures.

The CDF of VR under the A_IF scenario(VR=1 for
all samples in A_I) is shown in Fig. 10. It is obvious
that the majority of ‘Yes’ needs VR=1.

5.4. Machine Learning Classifiers Comparison
Considering that TQ and acceptability in our experi-

ments are categorical variables, we used machine learn-
ing classification methods to model the relationships
among selected APMs and QoE factors. These candi-
date methods were Naive Bayes, Logistic Regression,
k-NN Classification, and Decision Tree. K-fold-cross-
validation was employed to find the one providing the
highest mean accuracy.

The mean accuracy using the above four machine
learning classifiers is shown in Fig. 11. Decision Tree
provides the highest accuracy in almost all scenarios,
which agrees with the conclusion in [23]. It is also the
most stable classifier across all cases. Decision Tree is
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Figure 8: Empirical cdf for RR vs. Acceptability.

employed in the following analysis. Decision Tree and
other classifiers we used are implemented by the scikit-
learn tool [46] and MATLAB. Both the scikit-learn tool
and MATLAB use Classification And Regression Tree
(CART) [47] to build a tree. In general, the time com-
plexity of CART algorithm is O(mn log n), where m is
the number of the input parameters, n is the total num-
ber of data.

5.5. The Impact of Failures Appearance

To clearly reveal the effect of APMs under various
scenarios by classification tree, we use the compacted
decision tree as [23] did. We classify RR, VRs, and VR
into four levels: (very low, low, high and very high), as
shown in Table 7. The reason we divided APMs into
these four levels is that these levels of APMs can clas-
sify the designed impairment/ failure types, as shown in
Fig. 3.
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Figure 9: Empirical cdf for VRs vs. Acceptability.
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Figure 10: Empirical cdf for VR vs. Acceptability, A_IF case.

Decision Tree is biased towards classes which occupy
the majority number of samples. However, we have
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Figure 11: Machine learning classifiers.

Level RR VR VRs

Very low < 0.05 < 0.45 < 0.3
Low 0.05 − 0.125 0.45 − 0.65 0.3 − 0.6
High 0.125 − 0.2 0.65 − 0.9 0.6 − 0.9
Very high > 0.2 > 0.9 > 0.9

Table 7: Four levels of RR, VR, and VRs based on data.

more positive samples (TQ>3 or acceptability is ‘Yes’)
than negative ones. In fact, we value the information
hidden for the negative cases more, thus we assign a
higher weight to negative cases. Note that we only plan
to obtain a general understanding of the impact caused
by failures, especially when the types of APMs are lim-
ited (only three metrics are considered). For developing
a predictive QoE model, this strategy might not be use-
ful.
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Figure 12: Compacted Decision Tree for A_I and A_IF.

The structure of compacted decision tree to interpret
TQ = f(RR, VR, VRs) for A_I and A_IF. is shown in
Fig. 12. Note that VR=1 in all A_I samples, however, it
is interesting to investigate whether VR will become a
valuable predictor if failures appear.

According to the experimental results, if Integrity im-
pairments appear, RR is the main predictor to decide TQ
levels in the compacted tree. On the other hand, when
failures are taken into account, VR plays a more impor-
tant role to determine TQ levels. This proves that the
impact of failures should be considered in QoE of OTT
video streaming. The changed structure indicates that
a predictive model for both failures and impairments
should consider VR first, and the impact of RR and VRs

should be discussed separately under different VR lev-
els.
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Figure 13: Compacted Decision Tree for A_I and A_IF.

It is also important to notice that the compacted de-
cision tree does not include all possible TQ levels. For
example, TQ=1 is missed in the decision tree based on
A_I, while TQ=5 is missed in the case of A_IF.

Two are the main reasons for this phenomenon: first,
the basis of Decision Tree is information gain, which
leads the tree being biased to samples with larger sizes
under the same conditions; and second, we compacted
the level of APMs instead of using exact values, which
provides a general structure for APMs with the price of
losing precision of the tree. However, the compacted
levels are enough to explore the general relationship
between APMs and between APMs and QoE factors
which is discussed in this work.

The Decision Tree of Accept = f(VR, RRs) of A_I
and A_IF is shown in Fig. 13. It is clear that the rela-
tionship between APMs of both trees is similar to the
corresponding structures shown in Fig. 12.

Table 8 shows the mean accuracy of compacted deci-
sion trees generated based on (RR, VRs) and (RR, VR,
VRs). The accuracy of trees based on (RR, VRs) is from
our previous work [48]. The ’Yes/No’ choice of accept-
ability leads to higher accuracy.

It can be inferred that the selection of the granular-
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A_I A_IF

TQ=f(RR, VRs) 42.64% 48.19%
TQ = f(RR, VR, VRs) 39.68% 39.86%

Accept=f(RR, VRs) 80.11% 81.11%
Accept=f(RR, VR, VRs) 75.90% 78.19%

Table 8: Mean accuracy (%) of decision trees, A_I and A_IF.

ity is important in deriving a predictive model, which
is stated in [23]. Considering that the available types of
APMs might be limited in an OTT video, it is invaluable
to discuss whether to select TQ or Acceptability as the
indicator for QoE. Another thing is that the accuracy
of f(RR, VR, VRs) is slightly lower than f(RR, VRs)
among all cases, even when one more predictor, VR, is
added in the latter. As was explained before, the pur-
pose of the compacted decision tree is to examine t the
generic relationship between APMs. However, the deci-
sion tree is based on information entropy, which means
the relationship between APMs will impact its accuracy.
If a primary model based on decision tree needs to be
developed, the relationship among APMs should be ex-
plored in more details.

The structure of decision trees for TQ = f(RR, VR,
VRs) in Scale B and Scale C is shown in Fig. 14. The
structure of the two decision trees are close to the struc-
ture shown in Figure 12(b): VR is the primary determi-
nant of TQ levels.

In these scenarios, the traditional ITU MOS scale is
changed to the introduced extended scales. The main
reason for this design is to reveal more details about the
impact of Retainability and Accessibility failures. TQ
tends to lower levels compared to the tree in the A_IF
case. It is obvious that the structures of the two trees are
close to TQ=f(RR, VR, VRs) in A_IF, thus the extended
scales will not impact the relationship among APMs.
However, the extended point, Terrible (TQ=0), appears
in the tree indicating that users tend to evaluate failure
types worse than Bad (TQ=1), but avoid Worst Possible
(TQ=-1).

The decision tree of Accept = f(RR, VRs, VR) under
B_IF and C_IF is shown in Fig. 15. It indicates that
the impact caused by failures is stable across all cases if
evaluated by Acceptability. A comparison of the accu-
racy of Accept = f(RR, VRs, VR) and TQ = f(RR, VRs,
VR) is shown in Table 9 and the accuracy of Accept =
f(RR, VRs) and TQ = f(RR, VRs) in [48]. It shows that
acceptability provides higher accuracy compared to TQ.
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Figure 14: Compacted Decision Tree for TQ = f(RR, VRs),B_IF and
C_IF.

6. Primary Model Discussion

It has been proved that VRs and VR should be con-
sidered when failure appears in the QoE assessment. In
this part, a simple QoE model is proposed by running
regression analysis to compare the usage of these new
predictors.

In the following models, we used levels of APMs, and
we have:

• MOS denotes the MOS of TQ.

• LRR denotes the level of RR.

• LVR denotes the level of VR.

• LVRs denotes the levels of VRs.
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Figure 15: Compacted decision tree for Accept = f(RR, VRs), B_IF
and C_IF.

B_IF C_IF

TQ=f(RR, VRs) 43.05% 43.75%
TQ = f(RR, VR, VRs) 39.72% 35.69%

Accept=f(RR, VRs) 82.92% 82.50%
Accept=f(RR, VR, VRs) 86.94% 79.72%

Table 9: Mean accuracy (%) of decision trees, B_IF and C_IF.

The mapping between levels of RR, VR and VRs and
numerical level for regression models are shown in Ta-
ble 10.

MOS = f (LRR) can achieve a high accuracy in lin-
ear regression analysis, as shown in Table 11. At the
same time, predicting MOS based on LRR and LVRs in
the A_IF scenario has a high goodness of fit if we only
estimate on impairment types, as shown in Table 12.
However, if we add LVR as a predictor and estimate
impairment and failure types together, the MSE (Mean
Squared Error) will highly increase, especially in the
MOS = f (LRR, LVR, LVRs ) case, shown in Table 13.
Therefore, we propose to use the QoE models in the
following Equation 5:

MOS = g1(LVR) · f1(LRR, LVRs )+
(1 − g1(LVR)) · f2(LRR, LVRs )

(5)

Symbol Very Low Low High Very high
LRR 1 2 3 4
LVR 1 2 3 4
LVRs 1 2 3 4

Table 10: The numerical number of levels of RR, VR, and VRs

MOS = f (PMs) MSE

MOS = 4.6317 − 0.4217LRR 0.0020
MOS = 3.7290 − 0.4217LRR + 0.2006LVRs < 0.0001

Table 11: Linear regression for A_I.

MOS = f (PMs) MSE

MOS = 4.7396 − 0.4990LRR 0.0095
MOS = 4.0499 − 0.4071LRR + 0.1533LVRs 0.0083

Table 12: Linear regression for A_IF, for impairment types.

MOS = f (PMs) MSE

MOS = 1.4568 − 0.1749LRR + 0.5829LVR 0.2021
MOS = 0.6450 + 0.3364LVR + 0.4577LVRs 0.1561
MOS = −1.3059 + 0.4292LRR + +1.0438LVR 8.8439

+1.1600LVRs

Table 13: Linear regression for A_IF, impairment and failure types.

where

g1(LVR) = {
1, if LVR = 4
0 if LVR , 4 (6)

Based on the experimental data:

MOS = g1(LVR) · (4.0499 − 0.4071LRR + 0.1533LVRs )
+(1 − g1(LVR)) · 0.2794LRR + 0.6430LVRs

(7)
and MS E = 0.0085.

This QoE model was tested on B_IF and C_IF and
the MSE is 0.0007 and 0.0038, respectively. Because
the limited types of impairments and failures, this model
is a coarse-grained model for QoE estimation. However,
it indicates the importance of VR and VRs when failure
appears.

7. Conclusion

In this paper, the relationship between performance
metrics and QoE factors through a data-driven machine
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learning approach was examined. A session-based QoE
model was used and two new QoE metrics were exam-
ined to evaluate the performance of the new model. Fur-
ther the impairments, two failures were introduced in
the experiments. Through extensive experimentation, it
was found that the feature of failures requires new per-
formance metrics to be introduced in the QoE evalua-
tion.

Furthermore, the traditional multi-point scale was
compared to the binary likert scale. According to ex-
perimental results, multiple levels are not necessary for
all OTT video services. Depending on the requirement
of accuracy and the purpose of QoE assessment, accept-
ability might be a valuable indicator of the user’s per-
ception. An extended scale was also examined and if it
is necessary for the addition of failures. The extended
scales can help users distinguish different TQ levels.

Finally, a primary QoE model is proposed based on
the experimental results and analysis. The introduced
model follows the changes in QoE due to the addition
of failures without missing the impairments.
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