
1

Continuous Integration and Continuous Delivery
Framework for SDS

Yahuza Bello∗†, Emanuel Figetakis ∗†, Ahmed Refaey∗†, and Petros Spachos ∗
∗University of Guelph, Ontario, Canada
†Manhattan College, New York, USA

Abstract—Fast and efficient development of software drives the
high demand for automation techniques, especially for cloud-based
systems trying to implement Software Defined Systems (SDS). The
emergence of Continuous Integration/Continuous Delivery (CI/CD)
provides a set of steps for building, testing, and deployment of new
software in an automated fashion. Consequently, many companies
integrate CI/CD pipelines into their platform to automate the devel-
opment and deployment of new software and applications. Software-
Defined Perimeter (SDP) is a new approach to cyber security
proposed by the Cloud Security Alliance (CSA) to dynamically secure
network services. This is reached utilizing the need-to-know concept
where authorization is only granted after strict user verification. SDP
framework integrates with cloud-based systems seamlessly. However,
the installation, configurations, and management of its components
are still manual. This will require a lot of time and resources as the
number of protected services increases. Therefore, this paper presents
the implementation of the Continuous Integration/Continuous Deliv-
ery (CI/CD) pipeline for the open SDP project that automates the
installation and deployment of its various components. Specifically,
the Open SDP components (i.e., SDP controller and gateway) will
be used as a use case to show the use of CI/CD and to secure
applications hosted on the OpenShift environment. The OpenShift
pipeline operator, based on the Tekton project was adopted as the
CI/CD pipeline for this project. The Code Ready Container (CRC)
was utilized as the OpenShift cluster, which is then hosted on a server
running a Windows OS. Furthermore, the challenges, as well as their
solutions to the Open SDP CI/CD pipeline, are presented.

I. INTRODUCTION

The past few decades have seen a rapid increase in cloud-based

systems that have a multitude of applications. These applications

range from consumer base services such as storage, web hosting,

email, etc. However, cloud-based systems are also finding consid-

erable use within the commercial sector that provide these services

and have their own applications. Applications can range from data

collection, cloud-based virtual instances, and deployments of web-

based applications. Nonetheless, cloud-based systems arrive with

their own challenges for even the largest of corporations trying to

implement them as well as other issues with latency, security, and

quality of life.

The introduction of Software Defined Systems (SDS) has

helped alleviate some of these challenges by adding software

components. An example of how the SDS is assisting cloud-

based systems is through the separation of different software

layers through a hypervisor. This means different software can run

independently of one another without compromising one another,

which in turn maximizes the use of the hardware. However, even

the SDS can bring some of its own challenges and the main

one that is shared with traditional cloud-based systems is the

implementation. The total setup of a system can be lengthy and

can take up to several days, which for a large corporation means

a loss of capital due to more personnel having to be dedicated to

a single implementation. This can slow down the services and if

a problem presents itself, it can disrupt the workflow.

Implementation of continuous integration and continuous de-

ployment (CI/CD) pipeline could be extremely beneficial. Not

only does the CI/CD pipeline help with implementation but also

helps with maintenance, testing, and deployment, and allows for

several people to work on the same project seamlessly [1]. The

commercial use of the CI/CD pipeline has a major impact, it

allows for the constant update of software and management for

applications and products. Most cloud-based systems that have

adopted the SDS can be managed through a CI/CD pipeline as

well as be implemented faster than the traditional setup. Most of

the challenges have been met from both cloud-based systems and

the SDS except one, security. The threat of security is a large one

especially since most of the services must be able to be accessed

by clients and therefore are visible on the public internet [2]. This

creates a large point of failure since anyone with the address can

talk to the service hosted on the hardware. Software vulnerabilities

can be found if there is an open port and with a few queries the

exact hardware can be discovered. Not only does the threat to the

service and data exist but also a threat to the physical hardware.

Due to the high increment in security vulnerabilities in

software-defined paradigms, the traditional security solutions fail

to provide the required network defense perimeters. The severity

of this point of failure is great and is a major concern to any

company that deals with customer data both financial and personal.

Even further a company that has private software that must remain

within the company, for it to be used by the employees can put

it on the cloud to be accessed, but if it exists on the network

then lies the chance that it can be found and stolen or replicated.

However by utilizing the cloud-based applications and SDS, a

security method can easily be implemented by using CI/CD

pipeline, and one such security method is the Software Defined

Perimeter (SDP). SDP is a zero-trust software-based security

system designed to provide devices/applications with a logical

defense perimeter against cyber-attacks [3][4]. This is achieved

through verification and authentication of any device/application

looking to gain access to the protected network services. The SDP

can mitigate several different kinds of cyber-attacks but it is most

advantageous to use in a cloud-based setting for the fact that it can

easily mitigate large-scale Distributed Denial of Service attacks

without any disruption to the network. For many companies, this

is the worst kind of attack because it can stop all services that

are being provided to a client. This downtime can result in a

loss of millions of dollars, especially in the financial sector. Since

2022 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)

978-1-6654-8432-9/22/$31.00 ©2022 IEEE 406

20
22

 IE
EE

 C
an

ad
ia

n
C

on
fe

re
nc

e
on

 E
le

ct
ric

al
 a

nd
 C

om
pu

te
r E

ng
in

ee
rin

g
(C

C
EC

E)
 |

97
8-

1-
66

54
-8

43
2-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

C
EC

E4
93

51
.2

02
2.

99
18

43
7

Authorized licensed use limited to: University of Guelph. Downloaded on January 11,2023 at 16:29:56 UTC from IEEE Xplore. Restrictions apply.

2

the nature of the SDP is zero-trust, this means it will mitigate a

DDOS attack without having to receive any special instruction. By

implementing this system companies can have a secure network

within keeps customer data and their own software private. An-

other benefit of using the SDP is that it prevents an attack from the

internal network. The SDP covers several points of failure from

SDS while still using a cloud-based system. Evidently, SDP is a

proven software-based security solution for cloud-based systems

[5]–[9]. However, the installation and deployment of the SDP

framework is not an easy task especially when more SDP clients

and SDP gateways are required as the network expands. Therefore,

in this paper, we present the implementation of the Continuous

Integration/Continuous Delivery (CI/CD) pipeline for SDP on the

Red Hat OpenShift Platform as a use case of SDS.

The rest of the paper is organized as follows: the next section

introduces the related works, which is then followed by section

III which covers the SDP as a use case for the SDS. Section

IV-A covers the CI/CD principle and its automation, followed by

Section IV-B which covers the Tekton CI/CD Pipeline. Section V

covers the implementation of CI/CD with SDP using Openshift,

followed by Section VI which covers the challenges, the proposed

solution and results. Section VII concludes the paper.

Fig. 1: CI/CD Pipeline

II. RELATED WORK

Within the industry, there are many systems that are being

created as Software Defined Systems. They are being used to

get more use out of cloud-based systems and create a better

application with better features. A recurring theme within the

industry is using software-defined systems for networking. In-

troducing SDS into the network helps enforce networking rules,

restrictions, and for mitigation. In [10] the authors are using a

Software Defined Network (SDN) to help manage networks to

create a faster incident response time in an industrial setting.

The SDN allows for better control over a network with direct

communication for sensors. This is one of the benefits of using an

SDN, it allows for more direct communication with the hardware

on the network, this can be especially useful when developing

smart cities, buildings, housing, etc.

The resilience of SDP against several cyber attacks was demon-

strated in several research works in the literature [5]–[9]. Some

of the security vulnerabilities introduced by the abstraction of

control and data layer in SDN were addressed using SDP in

[5]. The authors proposed combining SDP and SDN controllers

to secure the entire network against such vulnerabilities. SDP

was also integrated into the Network Function Virtualization

(NFV) to provide a zero-trust environment within the Network

Function Virtualization Infrastructure (NFVI) [6]. The authors

demonstrated how the SDP framework can be adopted to protect

network services from external attacks. In a previous work [7], we

proposed SDP as a security framework within Multi-access Edge

Computing (MEC) by placing the SDP components at the edge

of the network in order to block attacks such as DoS and port

scanning attacks. Additionally, we showcase the suitability of the

SDP framework (i.e., as a potential security framework for MEC-

based networks) by performing an End-to-End delay analysis of

the proposed SDP-MEC architecture. Most recently, we propose

a vEPC-vSDP architecture that integrates virtualized versions of

the SDP components with virtualized versions of Evolved Packet

Core (EPC) entities to provide a zero-trust environment within

the vEPC [8]. The proposed combined architecture was capable

of protecting the vEPC entities from both internal and external

attacks. The authors in [9] demonstrate how the SDP framework

fits into today’s cloud Infrastructure as a Service (IaaS) to serve

as a security measure against Denial of Service (DoS) attack. The

authors leverage the Amazon Web Service (AWS) platform to

implement their proposal and showcase its ability to resist cloud-

based attacks. In [11], the authors demonstrated how the Single

Packet Authorization (SPA) method of the SDP framework is able

to replace the login authentication method of the Message Queuing

Telemetry Transport (MQTT).

III. USE CASE OF SDP AS SDS

The SDP architecture consists of an SDP controller module,

an SDP client module (also referred to as Initiating Host (IH)),

and an SDP Accepting Host (AH) module. The SDP controller

module is the brain responsible for verification and authentication

of authorized hosts (i.e., initiating and accepting hosts) as well

as setting up a list of authorized services they can access. The

AH normally the SDP gateway enforces rules set by the SDP

controller to block all devices/applications’ access to the network

services except the ones verified and authorized by the controller.

This setup guarantees that only the authorized SDP IHs with a

valid certificate have access to the protected network services.

The concept of CI/CD pipeline is well-established thanks to the

rapid development of Development and Operations (DevOps) [12].

A typical CI/CD pipeline aims to assist DevOps teams to develop

codes, run tests and deliver/deploy the latest version of appli-

cations in either the staging or production environment reliably

without the need for expert interventions [13]. Some of the most

widely used CI/CD pipeline software include Jenkins, TeamCity,

Tekton, AWS CodePipeline, GitLab, and GitHub Actions [14].

Red Hat OpenShift is an open source container Platform as

a Service (PaaS) that hands developers the capability to develop

and deploy docker containerized applications and orchestrate them

using Kubernetes orchestrator [15]. It has a built-in CI/CD pipeline

based on the Tekton CI/CD project, which developers can leverage

code-to-container technology easily [16]. For the purpose of this

project, we opt to go with the built-in CI/CD pipeline operator

of OpenShift and also adopt the OpenShift Cluster to host an

application protected by SDP.

IV. CI/CD PIPELINE PRINCIPLE

A. CI/CD Pipeline

A typical CI/CD pipeline consists of a series of automated steps,

which when followed correctly ensures a reliable delivery/de-

ployment of new versions of applications [17]. A typical CI/CD

pipeline introduces automation and monitoring of application

2022 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)

407Authorized licensed use limited to: University of Guelph. Downloaded on January 11,2023 at 16:29:56 UTC from IEEE Xplore. Restrictions apply.

3

SDP
Gateway

SDP
Controller

Unit Test
Git Rep

Container
Registry

Build Stage

Push Images

SDP
Gateway

SDP
Controller

Staging Environment

SDP
Client

Production
Environment

Deploy Deploy

SDP CI/CD Pipeline

Fig. 2: Open SDP CI/CD pipeline

development, particularly the critical testing phase in the staging

environment as well as application deployment. Consequently,

developers eliminate the need to manually test and merging of

codes with the CI/CD pipeline. Conventional CI/CD systems were

designed to work with pipelines running on VMs. Recently, cloud-

native CI/CD pipelines move to deploy containerized applications

on platforms that provide PaaS hosting such as AWS, AZURE,

and OpenShift. Some of the most widely adopted CI/CD pipeline

tools are OpenShift pipeline, Jenkins, AWS CodePipeline, GitHub

Actions, etc.

Figure 1 shows the elements of a typical CI/CD pipeline, which

includes the following:

• Build Stage: in this stage, the pipeline fetches the source code

from the desired repository and builds a container image.

• Test Stage: this stage allows for a series of tests to be

conducted automatically

• Deployment Stage: in this stage, the verified application is

deployed either to the staging environment for further testing

or to production environments to end users.

OpenShift provides a built-in OpenShift CI/CD pipeline, which

is based on the Tekton project. Leveraging the OpenShift capabil-

ities for hosting containerized applications, the OpenShift CI/CD

pipeline can be designed to fetch codes, build a container image

and deploy the application on OpensShift Cluster.

B. Tekton CI/CD Pipeline

The Tekton CI/CD pipeline is a cloud-native CI/CD framework

designed for Kubernetes platforms for containerized applications

[18]. Leveraging the Kubernetes framework capabilities, Tekton

makes it possible to deploy containerized applications across

multiple cloud environments. Utilizing the Custom Resource Def-

initions (CRDs) of the Kubernetes framework, a Tetkon-based

CI/CD pipeline can be created and run through the Kubernetes

control plane.

A typical Tekton CI/CD pipeline consists of the following

elements:

• Task: a reusable, loosely coupled number of steps that

perform a specific task (e.g. building a container image).

• PipelineResources: are the set of objects that are going to be

used as inputs to a Task and can be the output of a Task.

• Pipeline: the definition of the pipeline and the Tasks that it

should perform.

• TaskRun: the execution and result of running an instance of

a task.

• PipelineRun: the execution and result of running an instance

of the pipeline, which includes a number of TaskRuns.

V. OPEN SDP CI/CD PIPELINE ON OPENSHIFT CLUSTER

OpenShift provides a developer version of its platform in the

form of Code Ready Container (CRC) that can be installed locally

on several OS such as Windows, Linux-based OS (only CentOS

and Ubuntu are supported), and MaC OS. For the Open SDP

CI/CD pipeline implementation, we opt to install the latest CRC

version of the OpenShift cluster on a server with CentOS OS.

Figure 2 shows the Open SDP CI/CD pipeline implementation,

which consists of the following elements:

• Build stage: in this stage, the containerized SDP controller

and SDP gateway are created, which are then stored in

the built-in container registry provided by the OpenShift

platform. Note that the docker build strategy provided by

OpenShift is used, which requires a dockerfile containing

the source code required to create the containerized SDP

components (i.e., SDP controller and gateway)

• Unit test stage: in this stage, a series of tests are conducted

to ensure that both SDP components are running as required.

• Deployment to staging environment: in this stage, the con-

tainerized SDP controller and gateway are deployed in the

staging environment where all the necessary configurations

are made and tested with an SDP client.

• Deployment to production environment: in this stage, the

containerized SDP components (i.e., SDP controller and SDP

gateway) are deployed in the production environment to be

used by clients.

2022 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)

408Authorized licensed use limited to: University of Guelph. Downloaded on January 11,2023 at 16:29:56 UTC from IEEE Xplore. Restrictions apply.

4

As explained earlier, the OpenShift CI/CD pipeline is based

on the Tekton pipeline and thus, requires CRDs files created for

the pipeline, all the tasks (i.e., SDP gateway, SDP controller, unit

test and deployment for the SDP gateway, and SDP controller)

included in the pipeline, pipelineResources (i.e., input resource

for SDP gateway and input resource for SDP controller) and

pipelineRun.

Fig. 3: Deployment of Open SDP CI/CD pipeline on OpenShift

Cluster

Fig. 4: Proposed Solution for Open SDP CI/CD Pipeline

The detail of the Open SDP CI/CD pipeline within the Open-

Shift cluster, which is a single node cluster serving as both master

and worker node is shown in figure 3. Upon successful deployment

of the containerized SDP components, a service (a Kubernetes

object for connectivity where a port on the host server is mapped

to a port on the pod hosting the SDP gateway) is created to connect

the SDP client to the SDP gateway. Note that under this setup, the

SDP controller is considered a protected application. Within the

OpenShift cluster, an internal network is automatically created for

the pods hosting the containerized SDP components as depicted

in figure 3. In this way, the SDP controller and gateway can

communicate as intended without further modifications. The SDP

client is hosted on VM within the server hosting the OpenShift

cluster and connects to the SDP gateway via the service created

as explained earlier.

VI. CHALLENGES, SOLUTION AND RESULTS

A. Challenges

There are several challenges that arise in the Open SDP CI/CD

implementation. These challenges are as follows:

• Containerizing SDP gateway: by its default setting, the SDP

gateway requires access to the kernel of the host OS to func-

tion correctly when setting up the iptables’ firewall policies,

which makes containerizing it unsuitable as containerized

applications have restrictions on kernel access by default.

This raises a big issue for the correct functioning of the SDP

gateway when containerized.

• SDP controller database for storing credential keys: by

default, the SDP controller stores all credential keys for

authentication and authorization of SDP components in a

MySQL database. These credential keys are automatically

generated and stored in the database when the containerized

SDP controller is built through the docker-build strategy

offered by OpenShift when the Open SDP CI/CD pipeline

is executed. This means that any change (i.e., either by

adding/removing SDP clients or SDP gateways) made that

will trigger the re-execution of the pipeline will result in the

generation of new credential keys for all the SDP components

involved. This will prompt the re-distribution of those keys

to the SDP components involved. To overcome this problem,

a persistence MySQL database offered by OpenShift can be

deployed separately in the CI/CD pipeline and attached to

the SDP controller.

• Root privileges: the default settings on the OpenShift cluster

restricts root access for any container launched in any pod.

It is usually considered a bad practice to allow root access in

both staging and production environments since any person

that has access to the cluster can be able to make significant

changes that are not allowed. Meanwhile, the configurations

of the SDP components strictly require root privileges. This

raises another issue that has to be addressed to fully configure

the SDP components as desired.

B. Proposed Solution

To address the challenges mentioned in the previous section,

we move the SDP controller and gateway to VMs and deploy a

simple containerized SSH server on the OpenShift cluster to be

the protected application as depicted in figure 4. The CRC for the

OpenShift cluster is installed on a server with Windows OS and

the SDP Controller, gateway, and client modules are installed on

VMs within the same host to ease connectivity. Internal loopback

adapters are used so the entire system is able to be connected.

With this setup, the SDP components can be configured as desired

bypassing the challenges faced when containerized. Also with this

configuration, only one machine is needed, and it still provides the

same security since both the gateway and controller are separate

entities on the same machine. All clients that request access

to the application deployed on the OpenShift cluster must be

authenticated and authorized by the SDP controller.

C. Results

Figure 5 compares the time of installation for any application

across three different methods of installation. The figure scales

2022 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)

409Authorized licensed use limited to: University of Guelph. Downloaded on January 11,2023 at 16:29:56 UTC from IEEE Xplore. Restrictions apply.

5

Fig. 5: Open SDP CI/CD pipeline

with the number of machines that need to have the application

installed and assuming once one installation is finished the ad-

ministrator would move to the next. This is neglecting the fact

that several installations could happen on different machines at

the same time but shows the maximum amount of time needed

for all of the machines. The three methods are manual installation,

script installation, and CI/CD installation. Manual installation is

the longest of the three, script assists little with the installation

whereas the installation on a pipeline takes little to no time. We

exclude loading times but the time needed for an administrator

to be attentive to the machine. This also shows the time needed

for updates as well, and the reason the CI/CD Pipeline is a better

method is that all installation is taken care of from the pipeline

as well as updates. As soon as an update is pushed through the

workflow it is downloaded onto the machines, and this all can take

place simultaneously across several different machines at once.

VII. CONCLUSION

This paper presents an implementation of CI/CD pipeline

framework for SDS. As a use case, we implemented the CI/CD

pipeline for the open SDP project on the Red Hat OpenShift

Platform. We adopted the Tekton-based built-in pipeline offered

by OpenShift and design the CI/CD pipeline stages for the SDP

project. Various challenges encountered such as container-based

SDP gateway problem, persistent database problem, and root

privileges problem were discussed and a solution was proposed to

overcome them. The results obtained demonstrate how the CI/CD

pipeline reduces the installation time compared to the manual and

script installations.

The system that was developed could be implemented in large

corporations to help protect data and provide a more reliable

service, at a very small cost. Also, since it is able to be imple-

mented as an SDS on a CI/CD pipeline it can be installed and

managed easily. It can also prevent the recurring threat of large-

scale DDOS attacks that began to appear in early 2022. We have

seen examples where companies like Amazon and Github have

both been attacked by different methods of DDOS attacks with a

traffic volume of 2.3Tbps. They were able to successfully mitigate

the attack but not prevent it. In many cases, the current methods of

mitigation are being used to attack the defenders. The Connection-

less Lightweight Directory Access Protocol (CLDAP) Reflection

method to increase traffic, a DDOS mitigation technique, has been

used to attack these large corporations. This is how SDP differs

from current methods, it will not allow unauthorized packets

to be sent to the network while running checks on the current

network nodes. This achieves both mitigation and defense within

the network if an attack would come from within. Both of these

recent DDOS attacks could have been prevented if SDP was in

place.

REFERENCES

[1] S. Arachchi and I. Perera, “Continuous integration and continuous deliv-
ery pipeline automation for agile software project management,” in 2018
Moratuwa Engineering Research Conference (MERCon), 2018, pp. 156–161.

[2] P. Mirdita, Z. Khaliq, A. R. Hussein, and X. Wang, “Localization for
intelligent systems using unsupervised learning and prediction approaches,”
IEEE Canadian Journal of Electrical and Computer Engineering, vol. 44,
no. 4, pp. 443–455, 2021.

[3] A. Refaey, S. Roy, and P. Fortier, “On the application of bp decoding to
convolutional and turbo codes,” in 2009 Conference Record of the Forty-
Third Asilomar Conference on Signals, Systems and Computers, 2009, pp.
996–1001.

[4] “Sdp: The most advanced zero trust architec-
ture,” Software Defined Perimeter Working Group, May
2020. [Online]. Available: https://cloudsecurityalliance.org/artifacts/
sdp-the-most-advanced-zero-trust-architecture/

[5] A. Sallam, A. Refaey, and A. Shami, “On the security of sdn: A completed
secure and scalable framework using the software-defined perimeter,” IEEE
Access, vol. 7, pp. 146 577–146 587, 2019.

[6] J. Singh, A. Refaey, and A. Shami, “Multilevel security framework for nfv
based on software defined perimeter (sdp),” IEEE Network, pp. 1–6, March
2020.

[7] J. Singh, Y. Bello, A. Refaey, A. Erbad, and A. Mohamed, “Hierarchical
security paradigm for iot multi-access edge computing,” IEEE Internet of
Things Journal, pp. 1–1, 2020.

[8] Y. Bello, A. R. Hussein, M. Ulema, and J. Koilpillai, “On sustained zero
trust conceptualization security for mobile core networks in 5g and beyond,”
IEEE Transactions on Network and Service Management, vol. 19, no. 2, pp.
1876–1889, 2022.

[9] J. Singh, A. Refaey, and J. Koilpillai, “Adoption of the software-defined
perimeter (sdp) architecture for infrastructure as a service,” Canadian Journal
of Electrical and Computer Engineering, vol. 43, no. 4, pp. 357–363, 2020.

[10] A. F. Murillo Piedrahita, V. Gaur, J. Giraldo, A. Cárdenas, and S. J. Rueda,
“Leveraging software-defined networking for incident response in industrial
control systems,” IEEE Software, vol. 35, no. 1, pp. 44–50, 2018.

[11] A. Refaey, A. Sallam, and A. Shami, “On iot applications: a proposed sdp
framework for mqtt,” Electronics Letters, 09 2019.

[12] A. Alnafessah, A. U. Gias, R. Wang, L. Zhu, G. Casale, and A. Filieri,
“Quality-aware devops research: Where do we stand?” IEEE Access, vol. 9,
pp. 44 476–44 489, 2021.

[13] F. Zampetti, S. Geremia, G. Bavota, and M. Di Penta, “Ci/cd pipelines
evolution and restructuring: A qualitative and quantitative study,” in 2021
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2021, pp. 471–482.

[14] J. Shah, D. Dubaria, and J. Widhalm, “A survey of devops tools for
networking,” in 2018 9th IEEE Annual Ubiquitous Computing, Electronics
Mobile Communication Conference (UEMCON), 2018, pp. 185–188.

[15] Red Hat Openshift. [Online]. Available: https://www.redhat.com/en/
technologies/cloud-computing/openshift/container-platform

[16] Understanding OpenShift Pipelines. [Online]. Available:
https://docs.openshift.com/container-platform/4.7/cicd/pipelines/
understanding-openshift-pipelines.html

[17] What is a CI/CD pipeline? [Online]. Available: https://www.redhat.com/en/
topics/devops/what-cicd-pipeline

[18] Welcome to Tekton. [Online]. Available: https://tekton.dev/docs/concepts/
overview/

2022 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)

410Authorized licensed use limited to: University of Guelph. Downloaded on January 11,2023 at 16:29:56 UTC from IEEE Xplore. Restrictions apply.

