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Abstract—The fast tempo of modern society has brought people
a series of emotional changes and mental pressures. Therefore,
research have emerged to help people pay attention to and regu-
late their mental health. Physiological signals are used in studies
from different fields to monitor and detect emotional change
and stress. Electrodermal activity (EDA) is such a physiological
signal that can reflect changes in skin conductivity when people’s
emotions change. The nature of neuromodulation makes such
changes not easily controlled by people subjectively so EDA
is an ideal emotion and stress monitoring indicator. Especially
with the popularity of wearable devices in the market, wearable
devices with built-in EDA sensors will be more competitive for the
functions that help people regulate their mental health. However,
since the EDA sensor usually acquires signals through fingers,
palms, or wrists, artifacts will inevitably be generated when
users move their hands or arms, and the artifacts will affect the
accuracy of emotional change detection. As a result, removing
artifacts in EDA signals is a challenging and important topic.
In this work, multiple signal processing methods are applied to
realize the objective of removing artifacts in the EDA signals from
the AMIGOS dataset. The results show that the proposed method
is promising and has the potential to be utilized in real-time EDA
signal processing and emotional change detection applications.

Index Terms—EDA, motion artifacts, artifact removal, ma-
chine learning

I. INTRODUCTION

With the acceleration of the pace of life and work, the
increase of competition pressure, the expansion of social expe-
rience, and the change of way of thinking in modern society,
there may be mental stress in work, study, life, interpersonal
relationships, and self-awareness. Especially today, when sci-
ence and technology are highly developed, people focus on
physical health but easily ignore mental health. There is an
inherent correlation between human psychological activities
and the physical functions of the human body [1]. An excellent
and steady emotional state can make the physical function
in the best condition. On the contrary, it will negatively
impact physical functions, affecting work and life and leading
to various diseases. Although mental health is a subjective
experience of the individual, emotional state changes and
stress can be measured with physiological signals [2], such
as Electrodermal Activity (EDA), Electrocardiography (ECG),
and Electroencephalography (EEG). Among these physiolog-
ical signals, EDA is widely used in research for stress or
emotion recognition.

Skin can reflect emotional changes due to psychological
changes or external stimuli through changes in skin resis-
tance [3]. EDA is one of the most sensitive emotional feed-
back, also known as Galvanic Skin Response (GSR). EDA
arises from the autonomous activation of the skin’s sweat
glands, triggered by emotional stimuli. When there is a change
in people’s moods, EDA signals show patterns that can be
statistically quantified by observation. With EDA, it is possible
to test mental state under the control of unconscious behavior,
that is, without subjective cognitive state control. In this case,
EDA is a hallmark of emotional arousal, which provides an
understanding of an event’s impact on mental activity.

With the development of technology, wearable devices such
as fitness trackers and smartwatches are gradually becoming
essential lifestyle device that helps people track their activity
level and basic health parameters. A variety of physiological
signal sensors are implemented in wearable devices. For ex-
ample, Photoplethysmography (PPG) sensors detect heartbeats
per minute, SpO2 sensors measure the oxygen level in the
blood, and ECG sensors detect the tiny electrical pulses that
happen with each heartbeat. Recently, EDA sensors are also
starting to be added to wearable devices due to the increasing
emphasis on mental health, such as the Fitbit Sense and
Charge 5 [4] and the Empatica E4 [5]. However, due to
users’ body movements, sensors in the wearable device will
be mixed with noises during the signal acquisition process.
Especially the motion artifact (MA), caused by the change
in the gap between the skin and the wearable device or the
device’s tiny displacement, results in inaccuracy signal values.
Inaccuracy signals will cause errors in data analysis, leading
to poor generalization ability of emotion or stress recognition
models. Consequently, it is crucial to understand the causes of
motion artifacts and select effective methods to recognize and
eliminate them in specific applications.

To address these challenges, this paper proposes a fusion
of wavelet-based and unsupervised machine learning methods
for motion artifact removal in EDA signals collected from
wearable devices. The rest of this paper is as follows: Sec-
tion II reviews the recent related works; Section III introduces
the features of the EDA signal; Section IV presents the
methodologies used in this study, and Section V presents
the results and discussions of the experiment; Section VI
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concludes this study.

II. RELATED WORKS

In recent years, numerous studies on using EDA to detect
emotional changes have been proposed, and different stimuli
and emotion classification methods are applied to these studies.
In [6], they chose acoustic stimuli from the International
Affective Digitized Sound System database [7] to arouse the
participants’ emotions and used K-nearest neighbors algorithm
(KNN) to perform the classification. Also using KNN as
the classifier, in [8], they conducted arousal detection exper-
iments with musical stimuli. In [9], they modified parts of
25 classical music pieces to different levels of unexpected
chords as stimuli. They investigated the correlation between
the designed music and the changes in physiological signals
(EDA, Heart rate, and Electroencephalogram). In [10], they
extracted wavelet high-frequency feature subset from the EDA
signals collected when the participants were watching music
videos and proved that this feature subset could offer higher
classification accuracy than time domain features.

For emotion recognition and stress detection, the common
classifiers are machine learning or deep learning models.
In [11], the authors used six machine learning methods to
assess the stress detection accuracy based on physiological
signals from two datasets, WESAD (Wearable Stress and
Affect Detection) [12] and the CLAS (Cognitive Load, Af-
fect and Stress Database) [13], while the Stacking Ensemble
Learning (SEL) has the best accuracy of 86.4% based on
the EDA signals in WESAD. Machine learning models for
stress detection were built and evaluated with the datasets
VerBIO [14] and WESAD as well in [15]. In [16], features in
the time domain, frequency domain, time-frequency domain,
and the Mel-Frequency Cepstral Coefficients (MFCC) from the
EDA signals in the AMIGOS dataset [17] were used for emo-
tion recognition, and a Support Vector Machine (SVM) was
adopted for the classification task. In [18], [19], Convolutional
Neural Network (CNN) and Multiscale Deep Convolutional
Neural Network (DCNN) were used for emotion recognition
and achieved an accuracy of 72.00% and 75.00, 69.80% and
79.10% for valence and arousal, respectively.

However, since motion artifacts are inevitable during the
experiments, further research for artifact detection and removal
methods is necessary, or the classification accuracy will be
negatively affected by the abnormal samples in the EDA
signals. In [20], they used curve fitting and sparse recovery
methods to recognize and remove artifacts in EDA signals.
In [21], they created an EDA dataset that has labeled noisy
and clean data. Several machine learning methods were used
to detect the noisy data and the Gradboost model obtained
the optimal accuracy of 93.87%. With the same dataset, they
proposed another novel deep learning method, deep convolu-
tional autoencoder (DCAE), to perform the motion artifacts
removal in [22]. In [23], 44 participants experienced multiple
tasks that could induce stress in a virtual working environment.
A Recurrent Neural Network (RNN) model applied to raw
EDA signal was the optimal model to recognize the motion

Fig. 1: The tonic and phasic components in a sample period
of EDA signal.

artifacts, and either the Continuous Decomposition Analysis
(CDA) or cvxEDA can be used to tackle the following artifact
correction problem. Unlike collecting data in a controlled
laboratory environment, they collected the EDA signals from
patients in the real operating room during surgery in [24]. The
crucial steps in the pipeline are using unsupervised machine
learning methods and choosing an appropriate threshold to
determine the artifacts in the EDA signals and correcting the
EDA artifacts by interpolating gaps.

III. ELECTRODERMAL ACTIVITY

Skin is the primary interface between organs and the envi-
ronment. Along with other organs, it is responsible for bodily
processes such as the immune system, thermal regulation, and
sensory movement. Skin is also a sensory organ. It contains an
extensive network of nerve cells and transmits environmental
changes based on temperature, pressure, and pain. Human
bodies have about three million sweat glands. Sweat gland
distribution varies significantly throughout the body, on the
forehead and cheeks, palms and fingers, and feet. When sweat
glands are triggered to become more active, they secrete water
into the skin surface through the pores. By changing the
positive and negative balance of ions in the exudate, electrical
currents flow more efficiently, resulting in measurable changes
in skin conductance. This change in skin conductance is
referred to as Electrodermal Activity. Skin conductance is
regulated solely by autonomic sympathetic activity to drive
physical, cognitive, and emotional states as well as entirely
subconscious cognitive levels.

EDA mainly consists of slowly changing tonic and rapidly
changing phasic components [25], shown in Fig. 1. The tonic
component is the slow changes in the EDA signal (from tens
of seconds to minutes). In the EDA signal, the DC component
is often considered the background level of activity where fast
EDA responses appear. Baseline levels of the slow component
vary widely between individuals, typically between 2 µS and
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Fig. 2: The components of EDA signals.

20 µS. It can also vary within the same body over a long
period, depending on different environmental factors and skin
conditions. The most common measurement of the tonic com-
ponent is the skin conductance level (SCL). Several studies
suggest that changes in SCL may be related to general changes
in emotional arousal, such as general emotional state and
stress levels. Since the SCL changes slowly, the measurement
interval must be extended from tens of seconds to minutes. A
summary of the EDA components is shown in Fig. 2.

The phasic component is the relatively rapid changes in
the EDA signal, known as the skin conductance response
(SCR). SCRs are rapid fluctuations or spikes that can be
observed in the EDA signal. Responses to specific events,
such as visual stimuli or unexpected questions, generate SCRs,
which are event-related SCRs (ER-SCRs). ER-SCR is the most
commonly used measure used in research to correlate changes
in emotional arousal to specific stimuli. ER-SCR usually will
start 1 to 5 seconds after the event and last for several
seconds due to the lag in skin conductance responses. A good
stimulus design that allows sufficient time between stimuli
is essential to avoid uncertainty about which stimuli cause a
certain ER-SCR. SCR occurs spontaneously as well, unrelated
to any specific event, and is called nonspecific SCR (NS-SCR).
The frequency of NS-SCR may vary between participants,
averaging 1-3 times per minute. NS-SCR is also considered
to be part of the main component of the EDA signal.

IV. METHODOLOGIES

The pipeline of the proposed system is shown in Fig. 3.
Details are introduced as follows.

A. Dataset

In this work, the AMIGOS is used, a dataset for affect,
personality, and mood research on individuals and groups.
AMIGOS has two experiments in different settings to elicit
the participants’ emotional changes. Then, the physiological
signals, including EEG, ECG, and EDA, were collected from
the participants by wearable sensors during the experiments.
For collecting signals, 40 participants watched 16 short videos
individually in the first experiment, and some participants
watched 4 long videos by individual or groups in the second
experiment. Moreover, both experiments used cameras to

record frontal, full-body, and depth video. Emotive EPOC
Neuroheadset was used to collect EEG signals (14-channel,
128Hz, and 14-bit resolution), and the Shimmer 2R4 platform
was used to record ECG (256Hz and 12-bit resolution) and
EDA (128Hz and 12-bit resolution ) signals. The AMIGOS
dataset offers opportunities for researchers to study personal-
ity, mood, and emotional responses to individual or group ac-
tivities and different stimuli based on either unimodal or multi-
modal physiological signals. In Fig. 4 the emotion distribution
of the AMIGOS dataset is illustrated. The four quadrants refer
to High-Arousal High-Valence (HAHV), Low-Arousal High-
Valence (LAHV), High-Arousal Low-Valence (HALV), and
Low-Arousal Low-Valence (LALV). This study will evaluate
the proposed methods based on a binary classification for
arousal and non-arousal state.

B. Artifacts Detection

The unsupervised algorithms are used for anomaly detec-
tion, where it is assumed that the training data consists of
mostly clean data.

1) K-Nearest Neighbor (KNN): The KNN algorithm is a
basic classification and regression method. The principle of the
KNN algorithm is that if most of the k nearest neighbors of a
sample in the feature space belong to a certain category, the
sample also belongs to this category and has the characteristics
of this category. This method only determines the sample
category to be classified according to one or several samples
in the nearest neighbor. The three essential elements of the
KNN model are distance, choice of K value, and classification
decision rules.

2) One-Class Support Vector Machine (OCSVM): OCSVM
can be used for outlier detection. Constructing the hyperplane
between the origin and the single-class training data can
determine whether the test sample is similar to the single-class
training data. If the test sample is similar to the single-class
training data, it can be classified as a similar sample, denoted
as 1. If the test sample is not similar to the single-class training
set data, it is denoted as -1. Since it can be constructed through
a hyperplane, it can be found that the sample to be predicted
is “similar” to the training set data, and then the model can
be used for outlier detection.

The artifact detection training is based on a 5-second time
window, as the motion that causes the artifact does not last
long. Typically, the samples do not have smooth rising and
recovering phases. The abnormal segments will be marked as
outliers.

C. Artifacts Correction

Discrete Wavelet Transform (DWT) is adopted for artifact
correction in this study. The coefficients of a DWT with the
Haar wavelet applied to the skin conductance at 3 different
time scales: 4 Hz, 2 Hz, and 1 Hz. Wavelet transforms are able
to capture both frequency and time information, and the Haar
wavelet is excellent at detecting sudden changes in signals,
which frequently occur during motion artifacts. The segments
with outliers which are detected in the previous stage will be
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Fig. 3: The pipeline for motion artifact detection system proposed in this study.

Fig. 4: The distribution of emotional states in the AMIGOS
in four quadrants.

corrected with DWT. The segments are combined with their
previous 10-second segment and post 10-second segment, if
the segments are not marked outliers, so that

D. Emotion Classification

1) Convolutional Network (CNN): With the growing de-
mand for data analysis, traditional machine learning models
cannot meet large-scale or complex data sets, such as images
and speech. The emergence and development of CNN have
solved such problems. A complete CNN can be constructed
by stacking Input Layers, Convolutional Layers, ReLU Layers,
Pooling Layers, and Fully Connected Layers.

2) Long Short Term Memory Network (LSTM): LSTM is
an improved Recurrent Neural Network (RNN) model that can
solve the long-distance dependencies problem. In deep learn-
ing (especially RNN), the “long-term dependence” problem is
ubiquitous. The long-term dependence is that after the neural
network nodes have undergone many stages of computation,
the features of the last relatively long time slice have been
covered. LSTM can solve the long-term dependencies problem
of RNN since LSTM introduces a gate mechanism to control
the circulation and loss of features.

3) Multilayer Perceptron (MLP): MLP is a feedforward
neural network. When there are few hidden layers, a gradient
descent learning algorithm is used to learn the weight param-
eters of the neural network. A given problem determines the
number of neurons in the input and output layers. Therefore,
the MLP structure design only needs to consider the two
hyperparameters of how many hidden layers there are and how
many neurons each hidden layer has.

V. RESULTS AND DISCUSSIONS

Table I shows the results of using KNN and OCSVM as
MA detectors, followed by classification with CNN, LSTM,
and MLP, respectively. All classifications used the Leave-one-
subject-out (LOSO) cross-validation. From the results, we can
notice that OCSVM is more efficient for MA detection than
KNN, regardless of which model is used for the next emotion
classification step. The reason that OCSVM is superior in this
study can be that OCSVM is not a strict outlier detection but
a novelty detection method and the model may match these
outliers. In one-class classification, only one class’ information
can be used for training, and other classes are missing. That is,
the boundary line that distinguishes two classes is learned from
the information of only one class of data. The MA detection
in this study conforms to such a one-class classification. In
comparison, KNN is not directly used for anomaly detection.
It classifies two or more data classes based on the distance
between samples. However, in the classification of unbalanced
datasets, the defects of KNN are apparent. Due to the influence
of sample distribution, it will shift the minority class to the
majority class. The distribution of abnormal and normal points
in the dataset in this study is typically imbalanced data,
resulting in the OCSVM, which is designed for abnormal
detection, being more suitable for the demands of this study.

For emotion classification, the results show that CNN offers
better performance than LSTM and MLP. When the MA detec-
tor is OCSVM, CNN achieved an accuracy of 88.69%. MLP
is a lightweight architecture which requires feature selection,
either manually or automatically. When MLP directly classifies
the input data, the effect is often unsatisfactory since it is
usually challenging for an MLP to have adequate classification
performance without feature selection in advance. However,
the result is often improved when a deeper multi-layer model
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AMIGOS DATASET CNN LSTM MLP
Raw EDA in the original dataset 0.8124 0.7928 0.6845
Cleaned EDA in the original dataset 0.8513 0.8117 0.7113
EDA MA Detection with KNN 0.8725 0.8243 0.7287
EDA MA Detection with OCSVM 0.8869 0.8497 0.7523

Table I: The accuracy of prediction results with three classifiers based on raw and cleansed EDA signal.

is used since the model is capable of extracting valuable
features. The final output layer of an MLP and a deeper
model, respectively, is that an MLP directly faces the raw data
while the other has important features that the previous layers
have processed. Although LSTM is a deep learning model
for time-series data, such as EDA signals, the architecture
may be complicated for a simple binary classification task.
The CNN used in this study has three layers, which is a
straightforward structure fitting for the scale and objective of
the binary classification problem here.

VI. CONCLUSION

This study proposed an automatic motion artifact detection
and correction method for EDA signals. Two unsupervised
algorithms, KNN and OCSVM, are assessed for artifact de-
tection, followed by discrete wavelet transform, which is used
for artifact correction. Then three deep learning models, CNN,
LSTM, and MLP, are evaluated for emotion classification. The
results show that the combination method of OCSVM for
MA detection and CNN for emotion classification outweighs
the other proposed method in this study. The combination
of OCSVM and CNN achieves an accuracy of 88.69%. The
limitation of this work is that no ground truth label can
be referenced for the MA in this dataset. Consequently, the
evaluation of the proposed methods is based on the final
emotion classification results. The preliminary results in this
study show the potential of using this method for further future
research related to motion artifact detection and removal.
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